Difference between revisions of "Aufgaben:Exercise 5.5: Multi-User Interference"

From LNTwww
m (Textersetzung - „*Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.“ durch „ “)
Line 3: Line 3:
 
}}
 
}}
  
[[File:P_ID1887__Mod_A_5_5.png|right|frame|PAKF und PKKF von M–Sequenzen mit <i>P</i> = 31]]
+
[[File:P_ID1887__Mod_A_5_5.png|right|frame|PAKF und PKKF von M–Sequenzen mit &nbsp;$P = 31$]]
 
Wir betrachten die PN–Modulation mit folgenden Parametern:
 
Wir betrachten die PN–Modulation mit folgenden Parametern:
* Die Spreizung erfolgt mit der M–Sequenz mit der Oktalkennung (45), ausgehend  vom Grad $G = 5$. Die Periodenlänge ist somit $P = 2^5 –1 = 31$.
+
* Die Spreizung erfolgt mit der M–Sequenz mit der Oktalkennung &nbsp;$(45)$, ausgehend  vom Grad &nbsp;$G = 5$. Die Periodenlänge ist somit &nbsp;$P = 2^5 –1 = 31$.
* Der AWGN–Parameter wird mit $10 · \lg \ (E_{\rm B}/N_0) = 5 \ \rm  dB$ festgelegt &nbsp; &rArr; &nbsp;  $E_{\rm B}/N_0 = 3.162 = 1/0.316$.
+
* Der AWGN–Parameter wird mit &nbsp;$10 · \lg \ (E_{\rm B}/N_0) = 5 \ \rm  dB$&nbsp; festgelegt &nbsp; &rArr; &nbsp;  $E_{\rm B}/N_0 = 3.162 = 1/0.316$.
 
* Die Bitfehlerwahrscheinlichkeit beträgt ohne interferierende Teilnehmer im gleichen Frequenzband:
 
* Die Bitfehlerwahrscheinlichkeit beträgt ohne interferierende Teilnehmer im gleichen Frequenzband:
 
:$$p_{\rm B} = {\rm Q} \left ( \sqrt{ {2E_{\rm B}}/{N_{\rm 0}}}\right ) \approx {\rm Q} \left ( \sqrt{2 \cdot 3.162}\right ) = {\rm Q} \left ( 2.515 \right ) \approx 6 \cdot 10^{-3} \hspace{0.05cm}.$$
 
:$$p_{\rm B} = {\rm Q} \left ( \sqrt{ {2E_{\rm B}}/{N_{\rm 0}}}\right ) \approx {\rm Q} \left ( \sqrt{2 \cdot 3.162}\right ) = {\rm Q} \left ( 2.515 \right ) \approx 6 \cdot 10^{-3} \hspace{0.05cm}.$$
* Da ohne interferierende Teilnehmer alle Nutzabtastwerte gleich $±s_0$ sind (Nyquistsystem), kann für die Bitfehlerwahrscheinlichkeit  mit dem Rauscheffektivwert $σ_d$ vor dem Entscheider, herrührend vom AWGN–Rauschen, auch geschrieben werden: &nbsp; $p_{\rm B} = {\rm Q} \left ( {s_0}/{\sigma_d}\right ) \hspace{0.05cm}.$
+
* Da ohne interferierende Teilnehmer alle Nutzabtastwerte gleich &nbsp;$±s_0$&nbsp; sind (Nyquistsystem), kann für die Bitfehlerwahrscheinlichkeit  mit dem Rauscheffektivwert &nbsp;$σ_d$&nbsp; vor dem Entscheider, herrührend vom AWGN–Rauschen, auch geschrieben werden: &nbsp;  
 +
:$$p_{\rm B} = {\rm Q} \left ( {s_0}/{\sigma_d}\right ) \hspace{0.05cm}.$$
  
 +
In dieser Aufgabe soll untersucht werden, wie die Bitfehlerwahrscheinlichkeit durch einen zusätzlichen Teilnehmer verändert wird.
  
In dieser Aufgabe soll untersucht werden, wie die Bitfehlerwahrscheinlichkeit durch einen zusätzlichen Teilnehmer verändert wird. Die möglichen Spreizfolgen des interferierenden Teilnehmers seien ebenfalls durch $P = 31$ festgelegt. Zur Verfügung stehen die PN–Generatoren mit den Oktalkennungen (45), (51), (57), (67), (73) und (75).
+
*Die möglichen Spreizfolgen des interferierenden Teilnehmers seien ebenfalls durch $P = 31$ festgelegt. Zur Verfügung stehen die PN–Generatoren mit den Oktalkennungen &nbsp;$(45)$, &nbsp;$(51)$, &nbsp;$(57)$, &nbsp;$(67)$, &nbsp;$(73)$ und &nbsp;$(75)$.
  
In der Tabelle sind die PKKF–Werte für $λ = 0$ angegeben, desweiteren auch der jeweilige Maximalwert für eine andere Anfangsphase:
+
*In der Tabelle sind die PKKF–Werte für &nbsp;$λ = 0$&nbsp; angegeben, desweiteren auch der jeweilige Maximalwert für eine andere Anfangsphase:
 
:$$ {\rm Max}\,\,|{\it \varphi}_{45,\hspace{0.05cm}i}| = \max_{\lambda} \,\,|{\it \varphi}_{45,\hspace{0.05cm}i}(\lambda)| \hspace{0.05cm}.$$
 
:$$ {\rm Max}\,\,|{\it \varphi}_{45,\hspace{0.05cm}i}| = \max_{\lambda} \,\,|{\it \varphi}_{45,\hspace{0.05cm}i}(\lambda)| \hspace{0.05cm}.$$
Der Sonderfall $φ_\text{45, 45}(λ = 0)$ gibt den PAKF–Wert der Spreizfolge mit der Oktalkennung (45) an.
+
*Der Sonderfall &nbsp;$φ_\text{45, 45}(λ = 0)$&nbsp; gibt den PAKF–Wert der Spreizfolge mit der Oktalkennung &nbsp;&nbsp;$(45)$&nbsp; an.
 +
 
  
 
Im Verlauf dieser Aufgabe und in der Musterlösung werden folgende Signale erwähnt:
 
Im Verlauf dieser Aufgabe und in der Musterlösung werden folgende Signale erwähnt:
* $q(t)$: &nbsp; binäres bipolares Quellensignal, Symboldauer $T$,
+
:&nbsp;$q(t)$: &nbsp; binäres bipolares Quellensignal, Symboldauer &nbsp;$T$,
* $c(t)$:  &nbsp; $±1$–Spreizsignal, Chipdauer $T_c$,
+
:&nbsp;$c(t)$:  &nbsp; $±1$–Spreizsignal, Chipdauer &nbsp;$T_c$,
* $s(t)$:  &nbsp; bandgespreiztes Sendesignal; es gilt  $s(t) = q(t) · c(t)$, Amplitude $±s_0$, Chipdauer $T_c$,
+
:&nbsp;$s(t)$:  &nbsp; bandgespreiztes Sendesignal; es gilt  &nbsp;$s(t) = q(t) · c(t)$, Amplitude &nbsp;$±s_0$, Chipdauer &nbsp;$T_c$,
* $n(t)$:  &nbsp; AWGN–Rauschen, gekennzeichnet durch den Quotienten $E_{\rm B}/N_0$,
+
:&nbsp;$n(t)$:  &nbsp; AWGN–Rauschen, gekennzeichnet durch den Quotienten &nbsp;$E_{\rm B}/N_0$,
* $i(t)$:  &nbsp; Interferenzsignal des störenden Teilnehmers,
+
:&nbsp;$i(t)$:  &nbsp; Interferenzsignal des störenden Teilnehmers,
* $r(t)$:  &nbsp; Empfangssignal; es gilt  $r(t) = s(t) + n(t) + i(t)$,
+
:&nbsp;$r(t)$:  &nbsp; Empfangssignal; es gilt  &nbsp;$r(t) = s(t) + n(t) + i(t)$,
* $b(t)$:  &nbsp;  bandgestauchtes Signal; es gilt  $b(t)= r(t) · c(t)$,
+
:&nbsp;$b(t)$:  &nbsp;  bandgestauchtes Signal; es gilt  &nbsp;$b(t)= r(t) · c(t)$,
* $d(t)$:  &nbsp; Detektionssignal nach Integration von $b(t)$ über die Symboldauer $T$,
+
:&nbsp;$d(t)$:  &nbsp; Detektionssignal nach Integration von &nbsp;$b(t)$&nbsp; über die Symboldauer &nbsp;$T$,
* $v(t)$:  &nbsp; Sinkensignal, der Vergleich mit $q(t)$ liefert die Fehlerwahrscheinlichkeit.
+
:&nbsp;$v(t)$:  &nbsp; Sinkensignal, der Vergleich mit &nbsp;$q(t)$&nbsp; liefert die Fehlerwahrscheinlichkeit.
 +
 
 +
 
 +
 
  
  
 
''Hinweise:''  
 
''Hinweise:''  
*Die Aufgabe gehört zum  Kapitel [[Modulationsverfahren/Fehlerwahrscheinlichkeit_der_PN%E2%80%93Modulation|Fehlerwahrscheinlichkeit der PN-Modulation]].
+
*Die Aufgabe gehört zum  Kapitel&nbsp; [[Modulationsverfahren/Fehlerwahrscheinlichkeit_der_PN%E2%80%93Modulation|Fehlerwahrscheinlichkeit der PN-Modulation]].
*Bezug genommen wird insbesondere auf den Abschnitt [[Modulationsverfahren/Fehlerwahrscheinlichkeit_der_PN–Modulation#Zwei_Teilnehmer_mit_M.E2.80.93Sequenz.E2.80.93Spreizung |Zwei Teilnehmer mit M&ndash;Sequenz&ndash;Spreizung]].  
+
*Bezug genommen wird insbesondere auf den Abschnitt&nbsp; [[Modulationsverfahren/Fehlerwahrscheinlichkeit_der_PN–Modulation#Zwei_Teilnehmer_mit_M.E2.80.93Sequenz.E2.80.93Spreizung |Zwei Teilnehmer mit M&ndash;Sequenz&ndash;Spreizung]].  
 
   
 
   
 
*Für die so genannte Q-Funktion kann von folgenden Näherungen ausgegangen werden:
 
*Für die so genannte Q-Funktion kann von folgenden Näherungen ausgegangen werden:
Line 45: Line 51:
 
$σ_d/s_0 \ = \ $  { 0.4 3% }  
 
$σ_d/s_0 \ = \ $  { 0.4 3% }  
  
{Welche Bitfehlerwahrscheinlichkeit $p_{\rm B}$ erhält man, wenn der störende Teilnehmer $i(t)$ die gleiche M–Sequenz mit Oktalkennung (45) nutzt wie der betrachtete Teilnehmer?
+
{Welche Bitfehlerwahrscheinlichkeit &nbsp;$p_{\rm B}$&nbsp; erhält man, wenn der störende Teilnehmer &nbsp;$i(t)$&nbsp; <br>die gleiche M–Sequenz mit Oktalkennung &nbsp;$(45)$&nbsp; nutzt wie der betrachtete Teilnehmer?
 
|type="{}"}
 
|type="{}"}
 
$p_{\rm B}\ = \ $ { 25 3% } $\ \%$
 
$p_{\rm B}\ = \ $ { 25 3% } $\ \%$
  
{Welche Bitfehlerwahrscheinlichkeit $p_{\rm B}$ ergibt sich näherungsweise, wenn der störende Teilnehmer die M–Sequenz  mit Oktalkennung (75)  nutzt?
+
{Welche Bitfehlerwahrscheinlichkeit &nbsp;$p_{\rm B}$&nbsp; ergibt sich näherungsweise, wenn der störende Teilnehmer&nbsp;$i(t)$&nbsp; <br> die M–Sequenz  mit Oktalkennung &nbsp;$(75)$&nbsp; nutzt?
 
|type="{}"}
 
|type="{}"}
 
$p_{\rm B}\ = \ $ { 1.2 3% } $\ \%$
 
$p_{\rm B}\ = \ $ { 1.2 3% } $\ \%$
Line 55: Line 61:
 
{Welche Aussagen könnten unter Umständen für eine andere Spreizfolge des interferierenden Teilnehmers möglich sein?
 
{Welche Aussagen könnten unter Umständen für eine andere Spreizfolge des interferierenden Teilnehmers möglich sein?
 
|type="[]"}
 
|type="[]"}
- Mit der Oktalkennung (51) ist &nbsp; $p_{\rm B} = 0.001$ &nbsp;  möglich.
+
- Mit der Oktalkennung &nbsp;$(51)$&nbsp; ist &nbsp; $p_{\rm B} = 0.001$ &nbsp;  möglich.
+ Mit der Oktalkennung (57) ist &nbsp;  $p_{\rm B} = 0.007$ &nbsp;  möglich.
+
+ Mit der Oktalkennung &nbsp;$(57)$&nbsp; ist &nbsp;  $p_{\rm B} = 0.007$ &nbsp;  möglich.
+ Mit der Oktalkennung (67) ist &nbsp; $p_{\rm B} = 0.012$ &nbsp; möglich.
+
+ Mit der Oktalkennung &nbsp;$(67)$&nbsp; ist &nbsp; $p_{\rm B} = 0.012$ &nbsp; möglich.
 
</quiz>
 
</quiz>
  

Revision as of 14:47, 18 January 2019

PAKF und PKKF von M–Sequenzen mit  $P = 31$

Wir betrachten die PN–Modulation mit folgenden Parametern:

  • Die Spreizung erfolgt mit der M–Sequenz mit der Oktalkennung  $(45)$, ausgehend vom Grad  $G = 5$. Die Periodenlänge ist somit  $P = 2^5 –1 = 31$.
  • Der AWGN–Parameter wird mit  $10 · \lg \ (E_{\rm B}/N_0) = 5 \ \rm dB$  festgelegt   ⇒   $E_{\rm B}/N_0 = 3.162 = 1/0.316$.
  • Die Bitfehlerwahrscheinlichkeit beträgt ohne interferierende Teilnehmer im gleichen Frequenzband:
$$p_{\rm B} = {\rm Q} \left ( \sqrt{ {2E_{\rm B}}/{N_{\rm 0}}}\right ) \approx {\rm Q} \left ( \sqrt{2 \cdot 3.162}\right ) = {\rm Q} \left ( 2.515 \right ) \approx 6 \cdot 10^{-3} \hspace{0.05cm}.$$
  • Da ohne interferierende Teilnehmer alle Nutzabtastwerte gleich  $±s_0$  sind (Nyquistsystem), kann für die Bitfehlerwahrscheinlichkeit mit dem Rauscheffektivwert  $σ_d$  vor dem Entscheider, herrührend vom AWGN–Rauschen, auch geschrieben werden:  
$$p_{\rm B} = {\rm Q} \left ( {s_0}/{\sigma_d}\right ) \hspace{0.05cm}.$$

In dieser Aufgabe soll untersucht werden, wie die Bitfehlerwahrscheinlichkeit durch einen zusätzlichen Teilnehmer verändert wird.

  • Die möglichen Spreizfolgen des interferierenden Teilnehmers seien ebenfalls durch $P = 31$ festgelegt. Zur Verfügung stehen die PN–Generatoren mit den Oktalkennungen  $(45)$,  $(51)$,  $(57)$,  $(67)$,  $(73)$ und  $(75)$.
  • In der Tabelle sind die PKKF–Werte für  $λ = 0$  angegeben, desweiteren auch der jeweilige Maximalwert für eine andere Anfangsphase:
$$ {\rm Max}\,\,|{\it \varphi}_{45,\hspace{0.05cm}i}| = \max_{\lambda} \,\,|{\it \varphi}_{45,\hspace{0.05cm}i}(\lambda)| \hspace{0.05cm}.$$
  • Der Sonderfall  $φ_\text{45, 45}(λ = 0)$  gibt den PAKF–Wert der Spreizfolge mit der Oktalkennung   $(45)$  an.


Im Verlauf dieser Aufgabe und in der Musterlösung werden folgende Signale erwähnt:

 $q(t)$:   binäres bipolares Quellensignal, Symboldauer  $T$,
 $c(t)$:   $±1$–Spreizsignal, Chipdauer  $T_c$,
 $s(t)$:   bandgespreiztes Sendesignal; es gilt  $s(t) = q(t) · c(t)$, Amplitude  $±s_0$, Chipdauer  $T_c$,
 $n(t)$:   AWGN–Rauschen, gekennzeichnet durch den Quotienten  $E_{\rm B}/N_0$,
 $i(t)$:   Interferenzsignal des störenden Teilnehmers,
 $r(t)$:   Empfangssignal; es gilt  $r(t) = s(t) + n(t) + i(t)$,
 $b(t)$:   bandgestauchtes Signal; es gilt  $b(t)= r(t) · c(t)$,
 $d(t)$:   Detektionssignal nach Integration von  $b(t)$  über die Symboldauer  $T$,
 $v(t)$:   Sinkensignal, der Vergleich mit  $q(t)$  liefert die Fehlerwahrscheinlichkeit.



Hinweise:

  • Für die so genannte Q-Funktion kann von folgenden Näherungen ausgegangen werden:
$$ {\rm Q} (2) \approx 0.02275, \hspace{0.2cm}{\rm Q} (3) \approx 0.00135, \hspace{0.2cm}{\rm Q} (5) \approx 2.45 \cdot 10^{-7} \hspace{0.05cm}.$$


Fragebogen

1

Wie groß ist der (normierte) Rauscheffektivwert am Entscheider?

$σ_d/s_0 \ = \ $

2

Welche Bitfehlerwahrscheinlichkeit  $p_{\rm B}$  erhält man, wenn der störende Teilnehmer  $i(t)$ 
die gleiche M–Sequenz mit Oktalkennung  $(45)$  nutzt wie der betrachtete Teilnehmer?

$p_{\rm B}\ = \ $

$\ \%$

3

Welche Bitfehlerwahrscheinlichkeit  $p_{\rm B}$  ergibt sich näherungsweise, wenn der störende Teilnehmer $i(t)$ 
die M–Sequenz mit Oktalkennung  $(75)$  nutzt?

$p_{\rm B}\ = \ $

$\ \%$

4

Welche Aussagen könnten unter Umständen für eine andere Spreizfolge des interferierenden Teilnehmers möglich sein?

Mit der Oktalkennung  $(51)$  ist   $p_{\rm B} = 0.001$   möglich.
Mit der Oktalkennung  $(57)$  ist   $p_{\rm B} = 0.007$   möglich.
Mit der Oktalkennung  $(67)$  ist   $p_{\rm B} = 0.012$   möglich.


Musterlösung

(1)  Aus den beiden vorne angegebenen Gleichungen folgt direkt:

$$p_{\rm B} = {\rm Q}(2.515) = {\rm Q}({s_0}/{\sigma_d}) \hspace{0.3cm}\Rightarrow\hspace{0.3cm} \frac{\sigma_d}{s_0} = \frac{1}{2.515} = 0.398 \hspace{0.15cm}\underline {\approx 0.4} \hspace{0.05cm}.$$

Man könnte diese Größe aber auch über die allgemeinere Gleichung

$$ \sigma_d^2 = \frac{N_0}{2 }\cdot\int^{+\infty}_{-\infty} |H_{\rm I}(f) |^2 \,\,{\rm d} {\it f}\hspace{0.05cm} = \frac{N_0}{2 }\cdot\int^{+\infty}_{-\infty}{\rm si}^2(\pi f T)\,\,{\rm d} {\it f} = \frac{N_0}{2T } \hspace{0.05cm}.$$

berechnen. Hierbei beschreibt $H_I(f)$ den Integrator im Frequenzbereich. Mit $E_{\rm B}= s_0^2 · T$ erhält man das gleiche Ergebnis:

$$\frac{\sigma_d^2}{s_0^2} = \frac{N_0}{2 \cdot s_0^2 \cdot T } = \frac{N_0}{2 E_{\rm B} } = \frac{0.316}{2 } = 0.158\hspace{0.3cm}\Rightarrow \hspace{0.3cm} {\sigma_d}/{s_0} = 0.398 \approx 0.4 \hspace{0.05cm}.$$

(2)  Benutzt der interferierende Teilnehmer die gleiche M–Sequenz mit Oktalkennung (45) wie der betrachtete Nutzer, so sind die (normierten) Detektionsnutzabtastwerte gleich $+2$ (zu 25%), $-2$ (zu 25%) und $0$ (zu 50%).

  • Bei $d(νT) = ±2$ wird die Fehlerwahrscheinlichkeit für den betrachteten Teilnehmer signifikant verkleinert. In diesem Fall übertragen beide Nutzer das gleiche Bit („$+1$” oder „$-1$”) und der Abstand von der Schwelle wird verdoppelt:
$$ p_{\rm B}\,\,[{\rm falls}\,\, d (\nu T) = \pm 2s_0 ] = {\rm Q} \left ( 2 \cdot 2.515 \right ) = {\rm Q} \left ( 5.03 \right ) \approx 2.45 \cdot 10^{-7} \approx 0 \hspace{0.05cm}.$$
  • Ist dagegen $d(νT) = 0$ (zum Beispiel, wenn $a_\text{1(s)} = +1$ und $a_\text{1(i)} = -1$ gilt oder umgekehrt), so löschen sich die Signale vollständig aus und man erhält
$$p_{\rm B}\,\,[{\rm falls}\,\, d (\nu T) = 0 ] = {\rm Q} \left ( 0 \right ) = 0.5 \hspace{0.05cm}.$$
  • Durch Mittelung über diese beiden gleichwahrscheinlichen Möglichkeiten ergibt sich so für die mittlere Bitfehlerwahrscheinlichkeit:
$$p_{\rm B}= 0.5 \cdot 2.45 \cdot 10^{-7}+ 0.5 \cdot 0.5 \hspace{0.15cm}\underline {\approx 25\%} \hspace{0.05cm}.$$

(3)  Wir betrachten zunächst nur den Nutzanteil ⇒ $n(t) = 0$. Außerdem beschränken wir uns auf das erste Datensymbol und setzen den Amplitudenkoeffizienten $a_\text{1(s)} = +1$ voraus. Dann gilt innerhalb dieses Datenbits $s(t) = c_{45}(t)$. Ist der Koeffizient $a_\text{1(i)} $ des interferierenden Teilnehmers ebenfalls $+1$, so erhält man für die vorne spezifizierten Signale im Zeitintervall von $0$ bis $T$:

$$ r(t) = c_{45}(t) + c_{75}(t)\hspace{0.05cm},$$
$$b(t) = r(t) \cdot c_{45}(t) = \left [c_{45}(t) + c_{75}(t) \right ] \cdot c_{45}(t) = 1+ c_{45}(t) \cdot c_{75}(t) \hspace{0.05cm},$$
$$ d (T) = \frac{1}{T} \cdot \int_{0 }^{ T} b (t )\hspace{0.1cm} {\rm d}t = 1 + {\it \varphi}_{45,\hspace{0.05cm}75}(\lambda = 0) \hspace{0.05cm}.$$

Hierbei bezeichnet $φ_\text{45, 75}(τ)$ die PKKF zwischen den Spreizfolgen mit den Oktalkennungen (45) und (75), die in der Tabelle auf der Angabenseite zu finden sind.

Entsprechend gilt für den Detektionsnutzabtastwert unter der Voraussetzung $a_\text{1(s)} = +1$ und $a_\text{1(i)} =-1$:

$$d (T) = 1 - {\it \varphi}_{45,\hspace{0.05cm}75}(\lambda = 0) \hspace{0.05cm}.$$

Aus Symmetriegründen liefern die Koeffizienten $a_\text{1(s)} = -1$, $a_\text{1(i)} = -1$ sowie $a_\text{1(s)} = -1$, $a_\text{1(i)} = +1$ die genau gleichen Beiträge für die Bitfehlerwahrscheinlichkeit wie $a_\text{1(s)} = +1$, $a_\text{1(i)} = +1$ bzw. $a_{1(s)} = +1$, $a_{1(i)} = –1$, wenn man zudem das AWGN–Rauschen berücksichtigt.

Mit dem Ergebnis der Teilaufgabe (1) und mit $φ_\text{45, 75}(λ = 0) = 7/31$ erhält man somit näherungsweise:

$$p_{\rm B} = \frac{1}{2} \cdot {\rm Q} \left ( \frac{1+ 7/31}{0.4} \right ) + \frac{1}{2} \cdot {\rm Q} \left ( \frac{1- 7/31}{0.4} \right ) = \frac{1}{2} \cdot {\rm Q} \left ( \frac{1.225}{0.4} \right ) + \frac{1}{2} \cdot {\rm Q} \left ( \frac{0.775}{0.4} \right ) = \frac{1}{2} \cdot {\rm Q} \left ( 3.06 \right ) + \frac{1}{2} \cdot {\rm Q} \left ( 1.94 \right )$$
$$ \Rightarrow \hspace{0.3cm} p_{\rm B}\approx \frac{1}{2} \cdot \left [{\rm Q} \left ( 3 \right ) + {\rm Q} \left ( 2 \right ) \right ] = \frac{1}{2} \cdot \left [0.00135 + 0.02275 \right ] \hspace{0.15cm}\underline {= 0.012}\hspace{0.05cm}.$$

(4)  Möglich sind die Lösungsvorschläge 2 und 3:

  • Der PKKF–Wert $φ_\text{45, 57}(λ = 0)$ ist betragsmäßig nur 1/31 und damit ist die Fehlerwahrscheinlichkeit nur geringfügig größer als $0.6\%$.
  • Die Folge mit den Oktalkennung (67) führt dagegen zur gleichen PKKF wie die Folge (75.
  • Ohne störenden Teilnehmer gilt entsprechend dem Angabenblatt: $p_{\rm B} = 0.6\%$. Mit Interferenz kann dieser Wert nicht unterschritten werden   ⇒   Lösungsvorschlag 1 ist nicht möglich.