Difference between revisions of "Aufgaben:Exercise 2.2: Binary Bipolar Rectangles"
Line 96: | Line 96: | ||
− | In diesem Sinne ist $s_{0.5}(t)$ ein redundanzfreies Signal ⇒ <u>Lösungsvorschlag 2</u>. Somit ist hier die Entropie (der mittlere Informationsgehalt pro übertragenem Binärsymbol) maximal gleich dem Entscheidungsgehalt: | + | In diesem Sinne ist $s_{0.5}(t)$ ein redundanzfreies Signal ⇒ <u>Lösungsvorschlag 2</u>. |
+ | *Somit ist hier die Entropie (der mittlere Informationsgehalt pro übertragenem Binärsymbol) maximal gleich dem Entscheidungsgehalt: | ||
:$$H_{\rm max} = {1}/{2}\cdot {\rm log}_2 (2)+{1}/{2}\cdot {\rm log}_2 (2) = 1 \,\,{\rm bit/Bin\ddot{a}rsymbol} \hspace{0.05cm}.$$ | :$$H_{\rm max} = {1}/{2}\cdot {\rm log}_2 (2)+{1}/{2}\cdot {\rm log}_2 (2) = 1 \,\,{\rm bit/Bin\ddot{a}rsymbol} \hspace{0.05cm}.$$ | ||
− | Dagegen gilt für die Entropien der beiden anderen Binärsignale: | + | *Dagegen gilt für die Entropien der beiden anderen Binärsignale: |
:$$H = \ \frac{3}{4}\cdot {\rm log}_2 (\frac{4}{3})+ \frac{1}{4}\cdot {\rm log}_2 (4) | :$$H = \ \frac{3}{4}\cdot {\rm log}_2 (\frac{4}{3})+ \frac{1}{4}\cdot {\rm log}_2 (4) | ||
= \left( \frac{3}{4} + \frac{1}{4}\right)\cdot {\rm log}_2 (4) - | = \left( \frac{3}{4} + \frac{1}{4}\right)\cdot {\rm log}_2 (4) - | ||
Line 104: | Line 105: | ||
:$$ \hspace{0.5cm} = \ 2 - \frac{3}{4}\cdot{\rm log}_2 (3) = | :$$ \hspace{0.5cm} = \ 2 - \frac{3}{4}\cdot{\rm log}_2 (3) = | ||
0.811 \,\,{\rm bit/Bin\ddot{a}rsymbol} \hspace{0.05cm}.$$ | 0.811 \,\,{\rm bit/Bin\ddot{a}rsymbol} \hspace{0.05cm}.$$ | ||
− | Daraus ergibt sich für die relative Redundanz dieser Signale: | + | *Daraus ergibt sich für die relative Redundanz dieser Signale: |
:$$r = \frac{H_{\rm max} - H}{H_{\rm max}}\hspace{0.15cm} \approx 18.9\%\hspace{0.05cm}.$$ | :$$r = \frac{H_{\rm max} - H}{H_{\rm max}}\hspace{0.15cm} \approx 18.9\%\hspace{0.05cm}.$$ | ||
+ | |||
'''(2)''' Der quadratische Mittelwert ist unabhängig von $p$ gleich $m_{2a} = 1$: | '''(2)''' Der quadratische Mittelwert ist unabhängig von $p$ gleich $m_{2a} = 1$: | ||
:$$m_{2a}={\rm E}[a_\nu^2] = p \cdot (+1)^2 + (1-p)\cdot (-1)^2 \hspace{0.15cm}\underline { = 1 \hspace{0.05cm}}.$$ | :$$m_{2a}={\rm E}[a_\nu^2] = p \cdot (+1)^2 + (1-p)\cdot (-1)^2 \hspace{0.15cm}\underline { = 1 \hspace{0.05cm}}.$$ | ||
+ | |||
'''(3)''' Für den linearen Mittelwert erhält man | '''(3)''' Für den linearen Mittelwert erhält man | ||
Line 114: | Line 117: | ||
:$$\Rightarrow \hspace{0.3cm} p = 0.75\text{:} \hspace{0.4cm} m_{a}\hspace{0.15cm}\underline {=0.50},\hspace{0.2cm} p = 0.50\text{:} \hspace{0.4cm} m_{a}\hspace{0.15cm}\underline {=0},\hspace{0.2cm} p = 0.25\text{:} \hspace{0.4cm} m_{a}\hspace{0.15cm}\underline { =-0.50 \hspace{0.05cm}}.$$ | :$$\Rightarrow \hspace{0.3cm} p = 0.75\text{:} \hspace{0.4cm} m_{a}\hspace{0.15cm}\underline {=0.50},\hspace{0.2cm} p = 0.50\text{:} \hspace{0.4cm} m_{a}\hspace{0.15cm}\underline {=0},\hspace{0.2cm} p = 0.25\text{:} \hspace{0.4cm} m_{a}\hspace{0.15cm}\underline { =-0.50 \hspace{0.05cm}}.$$ | ||
− | '''(4)''' Mit den Ergebnissen aus (2) und (4) erhält man: | + | |
+ | '''(4)''' Mit den Ergebnissen aus '''(2)''' und '''(4)''' erhält man: | ||
:$$p = 0.75\text{:} \hspace{0.4cm} \sigma_{a}^2 \hspace{0.15cm}\underline {=0.75},$$ | :$$p = 0.75\text{:} \hspace{0.4cm} \sigma_{a}^2 \hspace{0.15cm}\underline {=0.75},$$ | ||
:$$ p = 0.50\text{:} \hspace{0.4cm} \sigma_{a}^2\hspace{0.15cm} \underline { =1.00 \hspace{0.05cm}},$$ | :$$ p = 0.50\text{:} \hspace{0.4cm} \sigma_{a}^2\hspace{0.15cm} \underline { =1.00 \hspace{0.05cm}},$$ | ||
Line 120: | Line 124: | ||
− | [[File:P_ID1311__Dig_A_2_2e.png|right|frame|AKF bei | + | [[File:P_ID1311__Dig_A_2_2e.png|right|frame|AKF bei gleichen Symbolwahrscheinlichkeiten]] |
'''(5)''' Richtig sind nur die <u>beiden ersten Aussagen</u>: | '''(5)''' Richtig sind nur die <u>beiden ersten Aussagen</u>: | ||
*Für $p = 0.5$ gilt $\varphi_{a}(\lambda = 0) = 1$ und $\varphi_{a}(\lambda \neq 0) = 0$. Daraus folgt: | *Für $p = 0.5$ gilt $\varphi_{a}(\lambda = 0) = 1$ und $\varphi_{a}(\lambda \neq 0) = 0$. Daraus folgt: | ||
Line 141: | Line 145: | ||
*Mit dem RZ–Tastverhältnis $T_{\rm S}/T = 0.5$ ergibt sich die skizzierte AKF, die auch durch eine periodische Dreieckfunktion der Höhe $s_{0}^{2}/8$ (mit roter Füllung) und einem einzigen Dreieckimpuls der Höhe $3/8 \cdot s_{0}^{2}$ (grün gefüllt) dargestellt werden kann. | *Mit dem RZ–Tastverhältnis $T_{\rm S}/T = 0.5$ ergibt sich die skizzierte AKF, die auch durch eine periodische Dreieckfunktion der Höhe $s_{0}^{2}/8$ (mit roter Füllung) und einem einzigen Dreieckimpuls der Höhe $3/8 \cdot s_{0}^{2}$ (grün gefüllt) dargestellt werden kann. | ||
*Dieser nichtperiodische Anteil führt zu einem kontinuierlichen, ${\rm si}^{2}$–förmigen LDS mit Nullstellen bei Vielfachen von $2/T$. | *Dieser nichtperiodische Anteil führt zu einem kontinuierlichen, ${\rm si}^{2}$–förmigen LDS mit Nullstellen bei Vielfachen von $2/T$. | ||
− | * | + | *Die periodische Dreieck–AKF bewirkt im LDS Diracfunktionen bei Vielfachen von $1/T$. |
− | *Aufgrund der Antimetrie des periodischen Anteils besitzen die Diracfunktionen bei Vielfachen von $2/T$ jeweils das Gewicht $0$. | + | *Aufgrund der Antimetrie des periodischen Anteils besitzen die Diracfunktionen bei Vielfachen von $2/T$ allerdings jeweils das Gewicht $0$. |
*Die Gewichte der Diracfunktionen im Abstand $1/T$ sind proportional zum kontinuierlichen LDS–Anteil. | *Die Gewichte der Diracfunktionen im Abstand $1/T$ sind proportional zum kontinuierlichen LDS–Anteil. | ||
Revision as of 12:07, 11 February 2019
Wir gehen von folgendem Signal aus:
- $$s(t) = \sum_{\nu = -\infty}^{+\infty} a_\nu \cdot g_s ( t - \nu \cdot T) \hspace{0.05cm}.$$
Der Sendegrundimpuls $g_{s}(t)$ wird in dieser Aufgabe stets als rechteckförmig angenommen, wobei das NRZ–Format (blaue Signalverläufe in der Grafik) als auch das RZ–Format mit dem Tastverhältnis $T_{\rm S}/T = 0.5$ (rote Signalverläufe) zu untersuchen ist.
Die Amplitudenkoeffizienten besitzen die folgenden Eigenschaften:
- Sie sind binär und bipolar: $a_{\nu} \in \{–1, +1\}$.
- Die Symbole innerhalb der Folge $\langle a_{\nu }\rangle$ weisen keine statistischen Bindungen auf.
- Die Wahrscheinlichkeiten für die beiden möglichen Werte $±1$ lauten mit $0 < p < 1$:
- $${\rm Pr}(a_\nu = +1) \ = \ p,$$
- $${\rm Pr}(a_\nu = -1) \ = \ 1 - p \hspace{0.05cm}.$$
Die drei in der Grafik dargestellten Signalausschnitte gelten für $p = 0.75$, $p = 0.50$ und $p = 0.25$.
Im Laufe dieser Aufgabe wird auf folgende Beschreibungsgrößen Bezug genommen:
- $m_{a} = \E\big[a_{\nu}\big]$ gibt den linearen Mittelwert der Amplitudenkoeffizienten an.
- $m_{2a} = \E\big[a_{\nu}^{2}\big]$ ist der quadratische Mittelwert.
- Damit kann auch die Varianz $\sigma_{a}^{2} = m_{2a} – m_{a}^{2}$ berechnet werden.
- Die diskrete AKF der Amplitudenkoeffizienten ist $\varphi_{a}(\lambda) = \E\big[a_{\nu} \cdot a_{\nu} + \lambda \big]$. Es gilt hier:
- $$\varphi_a(\lambda) = \left\{ \begin{array}{c} m_2 \\ m_1^2 \\ \end{array} \right.\quad \begin{array}{*{1}c} {\rm{f\ddot{u}r}}\\ {\rm{f\ddot{u}r}} \\ \end{array} \begin{array}{*{20}c}\lambda = 0, \\ \lambda \ne 0 \hspace{0.05cm}.\\ \end{array}$$
- Die Energie–AKF des Sendegrundimpulses beträgt:
- $$\varphi^{^{\bullet}}_{g_s}(\tau) = \left\{ \begin{array}{c} s_0^2 \cdot T_{\rm S} \cdot \left( 1 - {|\tau|}/{T_{\rm S}}\right) \\ 0 \\ \end{array} \right.\quad \begin{array}{*{1}c} {\rm{f\ddot{u}r}}\\ {\rm{f\ddot{u}r}} \\ \end{array} \begin{array}{*{20}c}|\tau| \le T_{\rm S} \\ |\tau| \ge T_{\rm S} \hspace{0.05cm}.\\ \end{array}$$
- Damit erhält man für die gesamte AKF des Sendesignals:
- $$\varphi_s(\tau) = \sum_{\lambda = -\infty}^{+\infty}{1}/{T} \cdot \varphi_a(\lambda)\cdot \varphi^{^{\bullet}}_{g_s}(\tau - \lambda \cdot T)\hspace{0.05cm}.$$
- Das Leistungsdichtespektrum ${\it \Phi}_{s}(f)$ ist die Fouriertransformierte der AKF $\varphi_{s}(\tau)$.
Hinweis:
- Die Aufgabe gehört zum Kapitel Grundlagen der codierten Übertragung.
Fragebogen
Musterlösung
- die Amplitudenkoeffizienten nicht voneinander abhängen (dies wurde hier vorausgesetzt),
- alle möglichen Amplitudenkoeffizienten gleichwahrscheinlich sind.
In diesem Sinne ist $s_{0.5}(t)$ ein redundanzfreies Signal ⇒ Lösungsvorschlag 2.
- Somit ist hier die Entropie (der mittlere Informationsgehalt pro übertragenem Binärsymbol) maximal gleich dem Entscheidungsgehalt:
- $$H_{\rm max} = {1}/{2}\cdot {\rm log}_2 (2)+{1}/{2}\cdot {\rm log}_2 (2) = 1 \,\,{\rm bit/Bin\ddot{a}rsymbol} \hspace{0.05cm}.$$
- Dagegen gilt für die Entropien der beiden anderen Binärsignale:
- $$H = \ \frac{3}{4}\cdot {\rm log}_2 (\frac{4}{3})+ \frac{1}{4}\cdot {\rm log}_2 (4) = \left( \frac{3}{4} + \frac{1}{4}\right)\cdot {\rm log}_2 (4) - \frac{3}{4}\cdot{\rm log}_2 (3) =$$
- $$ \hspace{0.5cm} = \ 2 - \frac{3}{4}\cdot{\rm log}_2 (3) = 0.811 \,\,{\rm bit/Bin\ddot{a}rsymbol} \hspace{0.05cm}.$$
- Daraus ergibt sich für die relative Redundanz dieser Signale:
- $$r = \frac{H_{\rm max} - H}{H_{\rm max}}\hspace{0.15cm} \approx 18.9\%\hspace{0.05cm}.$$
(2) Der quadratische Mittelwert ist unabhängig von $p$ gleich $m_{2a} = 1$:
- $$m_{2a}={\rm E}[a_\nu^2] = p \cdot (+1)^2 + (1-p)\cdot (-1)^2 \hspace{0.15cm}\underline { = 1 \hspace{0.05cm}}.$$
(3) Für den linearen Mittelwert erhält man
- $$m_{a}={\rm E}[a_\nu] = p \cdot (+1) + (1-p)\cdot (-1) = 2 p -1 \hspace{0.05cm}.$$
- $$\Rightarrow \hspace{0.3cm} p = 0.75\text{:} \hspace{0.4cm} m_{a}\hspace{0.15cm}\underline {=0.50},\hspace{0.2cm} p = 0.50\text{:} \hspace{0.4cm} m_{a}\hspace{0.15cm}\underline {=0},\hspace{0.2cm} p = 0.25\text{:} \hspace{0.4cm} m_{a}\hspace{0.15cm}\underline { =-0.50 \hspace{0.05cm}}.$$
(4) Mit den Ergebnissen aus (2) und (4) erhält man:
- $$p = 0.75\text{:} \hspace{0.4cm} \sigma_{a}^2 \hspace{0.15cm}\underline {=0.75},$$
- $$ p = 0.50\text{:} \hspace{0.4cm} \sigma_{a}^2\hspace{0.15cm} \underline { =1.00 \hspace{0.05cm}},$$
- $$ p = 0.25\text{:} \hspace{0.4cm} \sigma_{a}^2 \hspace{0.15cm}\underline {=0.75}.$$
(5) Richtig sind nur die beiden ersten Aussagen:
- Für $p = 0.5$ gilt $\varphi_{a}(\lambda = 0) = 1$ und $\varphi_{a}(\lambda \neq 0) = 0$. Daraus folgt:
- $$\varphi_s(\tau) = \frac{1}{T} \cdot \varphi^{^{\bullet}}_{gs}(\tau )\hspace{0.05cm}.$$
- Damit ergeben sich sowohl beim NRZ– als auch beim RZ–Grundimpuls eine dreieckförmige AKF und ein ${\rm si}^{2}$–förmiges LDS.
- Die Fläche unter dem LDS ist beim RZ–Impuls um den Faktor $T_{\rm S}/T$ kleiner als beim NRZ–Impuls, da sich auch die AKF–Werte bei $\tau = 0$ um diesen Faktor unterscheiden.
- Das LDS ist in beiden Fällen kontinuierlich, da die AKF keinen Gleichanteil und keine periodischen Anteile beinhaltet.
(6) Richtig sind alle Aussagen mit Ausnahme der dritten:
- Für $p = 0.75$ setzt sich die AKF $\varphi_{s}(\tau)$ aus unendlich vielen Dreieckfunktionen zusammen, die mit Ausnahme des mittleren Dreiecks um $\tau = 0$ alle die gleiche Höhe $s_{0}^{2}/4$ aufweisen.
- Entsprechend der Skizze kann man alle diese Dreieckfunktionen zu einem Gleichanteil der Höhe $m_{a}^{2} \cdot s_{0}^{2} = s_{0}^{2}/4$ und einem einzigen Dreieck um $\tau = 0$ mit der Höhe $\sigma_{a}^{2} \cdot s_{0}^{2} = 3/4 · s_{0}^{2}$ zusammenfassen.
- Im LDS führt dies zu einem kontinuierlichen, ${\rm si}^{2}$–förmigem Anteil und zu einer Diracfunktion bei $f = 0$. Das Gewicht dieses Diracs ist $s_{0}^{2}/4$.
- Für $p = 0.25$ ergibt sich die gleiche AKF wie mit $p = 0.75$, da sowohl der quadratische Mittelwert $m_{2a} = 1$ als auch $m_{a}^{2} = 0.25$ übereinstimmen. Somit stimmen natürlich auch die Leistungsdichtespektren überein.
(7) Beide Lösungsvorschläge sind richtig:
- Mit dem RZ–Tastverhältnis $T_{\rm S}/T = 0.5$ ergibt sich die skizzierte AKF, die auch durch eine periodische Dreieckfunktion der Höhe $s_{0}^{2}/8$ (mit roter Füllung) und einem einzigen Dreieckimpuls der Höhe $3/8 \cdot s_{0}^{2}$ (grün gefüllt) dargestellt werden kann.
- Dieser nichtperiodische Anteil führt zu einem kontinuierlichen, ${\rm si}^{2}$–förmigen LDS mit Nullstellen bei Vielfachen von $2/T$.
- Die periodische Dreieck–AKF bewirkt im LDS Diracfunktionen bei Vielfachen von $1/T$.
- Aufgrund der Antimetrie des periodischen Anteils besitzen die Diracfunktionen bei Vielfachen von $2/T$ allerdings jeweils das Gewicht $0$.
- Die Gewichte der Diracfunktionen im Abstand $1/T$ sind proportional zum kontinuierlichen LDS–Anteil.