Difference between revisions of "Aufgaben:Exercise 4.14Z: 4-QAM and 4-PSK"
Line 11: | Line 11: | ||
Bei beiden Verfahren hat jeder Signalraumpunkt die genau gleiche Energie, nämlich $E_{\rm S}$. | Bei beiden Verfahren hat jeder Signalraumpunkt die genau gleiche Energie, nämlich $E_{\rm S}$. | ||
− | Aus der Grafik erkennt man, dass für den Sonderfall $M = 4$ die beiden Modulationsverfahren eigentlich identisch sein müssten, was aus den obigen Gleichungen nicht direkt hervorgeht. | + | Aus der Grafik erkennt man, dass für den Sonderfall $M = 4$ die beiden Modulationsverfahren eigentlich identisch sein müssten, was aus den obigen Gleichungen nicht direkt hervorgeht. |
− | Die 4–PSK ist hier mit dem Phasenoffset $\phi_{\rm off} = 0$ dargestellt. Mit einem allgemeinen Phasenoffset lauten dagegen die Inphase– und Quadraturanteile der Signalraumpunkte allgemein ( | + | Die 4–PSK ist hier mit dem Phasenoffset $\phi_{\rm off} = 0$ dargestellt. Mit einem allgemeinen Phasenoffset lauten dagegen die Inphase– und Quadraturanteile der Signalraumpunkte allgemein: $(i = 0, \ ... \ , M = 1)$: |
:$$s_{{\rm I}i} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \cos \left ( { 2\pi i}/{ M} + \phi_{\rm off} \right ) \hspace{0.05cm},$$ | :$$s_{{\rm I}i} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \cos \left ( { 2\pi i}/{ M} + \phi_{\rm off} \right ) \hspace{0.05cm},$$ | ||
:$$ s_{{\rm Q}i} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \sin \left ( { 2\pi i}/{ M} + \phi_{\rm off} \right ) \hspace{0.05cm}.$$ | :$$ s_{{\rm Q}i} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \sin \left ( { 2\pi i}/{ M} + \phi_{\rm off} \right ) \hspace{0.05cm}.$$ | ||
+ | |||
+ | |||
+ | |||
+ | |||
''Hinweise:'' | ''Hinweise:'' | ||
− | * Die Aufgabe gehört zum Kapitel [[Digitalsignal%C3%BCbertragung/Tr%C3%A4gerfrequenzsysteme_mit_koh%C3%A4renter_Demodulation| Trägerfrequenzsysteme mit kohärenter Demodulation]]. | + | * Die Aufgabe gehört zum Kapitel [[Digitalsignal%C3%BCbertragung/Tr%C3%A4gerfrequenzsysteme_mit_koh%C3%A4renter_Demodulation| Trägerfrequenzsysteme mit kohärenter Demodulation]]. |
− | * Bezug genommen wird insbesondere auf die Seiten [[Digitalsignal%C3%BCbertragung/Tr%C3%A4gerfrequenzsysteme_mit_koh%C3%A4renter_Demodulation#Quadraturamplitudenmodulation_.28M.E2.80.93QAM.29| Quadraturamplitudenmodulation]] und [[Digitalsignal%C3%BCbertragung/Tr%C3%A4gerfrequenzsysteme_mit_koh%C3%A4renter_Demodulation#Mehrstufiges_Phase.E2.80.93Shift_Keying_.28M.E2.80.93PSK.29|Mehrstufige Phasenmodulation]]. | + | * Bezug genommen wird insbesondere auf die Seiten [[Digitalsignal%C3%BCbertragung/Tr%C3%A4gerfrequenzsysteme_mit_koh%C3%A4renter_Demodulation#Quadraturamplitudenmodulation_.28M.E2.80.93QAM.29| Quadraturamplitudenmodulation]] und [[Digitalsignal%C3%BCbertragung/Tr%C3%A4gerfrequenzsysteme_mit_koh%C3%A4renter_Demodulation#Mehrstufiges_Phase.E2.80.93Shift_Keying_.28M.E2.80.93PSK.29|Mehrstufige Phasenmodulation]]. |
* In der obigen Grafik rot eingezeichnet ist die Gray–Zuordnung der Symbole zu Bitdupeln. | * In der obigen Grafik rot eingezeichnet ist die Gray–Zuordnung der Symbole zu Bitdupeln. | ||
Line 31: | Line 35: | ||
$\phi_{\rm off}\ = \ $ { 45 3% } $\ \rm Grad$ | $\phi_{\rm off}\ = \ $ { 45 3% } $\ \rm Grad$ | ||
− | {Wie lautet die obere Schranke (Union–Bound, $p_{\rm UB} ≥ p_{\rm S}$ | + | {Wie lautet die obere Schranke $($Union–Bound, $p_{\rm UB} ≥ p_{\rm S})$ für die '''4–PSK'''? |
|type="[]"} | |type="[]"} | ||
- $p_{\rm UB} = 4 \cdot {\rm Q}[\sqrt{E_{\rm S}/N_0}\hspace{0.05cm}]$, | - $p_{\rm UB} = 4 \cdot {\rm Q}[\sqrt{E_{\rm S}/N_0}\hspace{0.05cm}]$, | ||
Line 37: | Line 41: | ||
- $p_{\rm UB} = 2 \cdot {\rm Q}[\sqrt{2E_{\rm S}/N_0}\hspace{0.05cm}]$. | - $p_{\rm UB} = 2 \cdot {\rm Q}[\sqrt{2E_{\rm S}/N_0}\hspace{0.05cm}]$. | ||
− | {Geben Sie eine nähere obere Schranke für die 4–QAM an. | + | {Geben Sie eine nähere obere Schranke für die '''4–QAM''' an. |
|type="[]"} | |type="[]"} | ||
- $p_{\rm S} ≤ 4 \cdot {\rm Q}[\sqrt{E_{\rm S}/N_0}\hspace{0.05cm}]$, | - $p_{\rm S} ≤ 4 \cdot {\rm Q}[\sqrt{E_{\rm S}/N_0}\hspace{0.05cm}]$, | ||
Line 43: | Line 47: | ||
- $p_{\rm S} ≤ 2 \cdot {\rm Q}[\sqrt{2E_{\rm S}/N_0}\hspace{0.05cm}]$. | - $p_{\rm S} ≤ 2 \cdot {\rm Q}[\sqrt{2E_{\rm S}/N_0}\hspace{0.05cm}]$. | ||
− | {Wie | + | {Wie lautet die Bitfehlerwahrscheinlichkeitsschranke für die 4–QAM, Graycodierung vorausgesetzt? |
|type="[]"} | |type="[]"} | ||
- $p_{\rm B} ≤ 2 \cdot {\rm Q}[\sqrt{2E_{\rm B}/N_0}\hspace{0.05cm}]$, | - $p_{\rm B} ≤ 2 \cdot {\rm Q}[\sqrt{2E_{\rm B}/N_0}\hspace{0.05cm}]$, |
Revision as of 15:53, 15 March 2019
Für die Quadraturamplitudenmodulation ($M$–QAM) wurde im Theorieteil für $M ≥ 16$ eine obere Schranke („Union–Bound”) der Symbolfehlerwahrscheinlichkeit angegeben:
- $$ p_{\rm UB} = 4 \cdot {\rm Q} \left [ \sqrt{ { E_{\rm S}}/{ N_0}} \hspace{0.05cm}\right ] \ge p_{\rm S} \hspace{0.05cm}.$$
Im Theorieteil findet man ebenfalls die „Union–Bound” für die M–stufige Phasenmodulation (M–PSK)
- $$ p_{\rm UB} = 2 \cdot {\rm Q} \left [ \sin ({ \pi}/{ M}) \cdot \sqrt{ { 2E_{\rm S}}/{ N_0}} \hspace{0.05cm}\right ] \ge p_{\rm S} \hspace{0.05cm}.$$
Bei beiden Verfahren hat jeder Signalraumpunkt die genau gleiche Energie, nämlich $E_{\rm S}$.
Aus der Grafik erkennt man, dass für den Sonderfall $M = 4$ die beiden Modulationsverfahren eigentlich identisch sein müssten, was aus den obigen Gleichungen nicht direkt hervorgeht.
Die 4–PSK ist hier mit dem Phasenoffset $\phi_{\rm off} = 0$ dargestellt. Mit einem allgemeinen Phasenoffset lauten dagegen die Inphase– und Quadraturanteile der Signalraumpunkte allgemein: $(i = 0, \ ... \ , M = 1)$:
- $$s_{{\rm I}i} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \cos \left ( { 2\pi i}/{ M} + \phi_{\rm off} \right ) \hspace{0.05cm},$$
- $$ s_{{\rm Q}i} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \sin \left ( { 2\pi i}/{ M} + \phi_{\rm off} \right ) \hspace{0.05cm}.$$
Hinweise:
- Die Aufgabe gehört zum Kapitel Trägerfrequenzsysteme mit kohärenter Demodulation.
- Bezug genommen wird insbesondere auf die Seiten Quadraturamplitudenmodulation und Mehrstufige Phasenmodulation.
- In der obigen Grafik rot eingezeichnet ist die Gray–Zuordnung der Symbole zu Bitdupeln.
Fragebogen
Musterlösung
- $$s_{{\rm I}i} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \cos \left ( { 2\pi i}/{ M} + \phi_{\rm off} \right ) \hspace{0.05cm},$$
- $$ s_{{\rm Q}i} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \sin \left ( { 2\pi i}/{ M} + \phi_{\rm off} \right ) \hspace{0.05cm}.$$
Mit $\phi_{\rm off} \ \underline {= \pi/2 \ (45^°)}$ ergeben sich genau die Signalraumpunkte der 4–QAM:
- $$\boldsymbol{ s}_{\rm 0} = (+\sqrt{2}, +\sqrt{2})\hspace{0.05cm},\hspace{0.2cm}\boldsymbol{ s}_{\rm 1} = (-\sqrt{2}, +\sqrt{2})\hspace{0.05cm},$$
- $$ \boldsymbol{ s}_{\rm 3} = (-\sqrt{2}, -\sqrt{2})\hspace{0.05cm},\hspace{0.2cm}\boldsymbol{ s}_{\rm 4} = (+\sqrt{2}, -\sqrt{2}) \hspace{0.05cm}.$$
(2) Richtig ist der Lösungsvorschlag 2: Für die 4–PSK ergibt sich mit der vorne angegebenen Gleichung
- $$p_{\rm S} \le p_{\rm UB} \hspace{-0.15cm} \ = \ \hspace{-0.15cm}2 \cdot {\rm Q} \left [ \sin ({ \pi}/{ M}) \cdot \sqrt{ { 2E_{\rm S}}/{ N_0}} \right ] = 2 \cdot {\rm Q} \left [ { 1}/{ \sqrt{2}} \cdot \sqrt{ { 2E_{\rm S}}/{ N_0}} \right ]= 2 \cdot {\rm Q} \left [ \sqrt{ { E_{\rm S}}/{ N_0}} \right ] \hspace{0.05cm}.$$
(3) Richtig ist der Lösungsvorschlag 2:
- Die 4–QAM ist mit der 4–PSK identisch (hinsichtlich Fehlerwahrscheinlichkeit sogar unabhängig vom Phasenoffset).
- Der Lösungsvorschlag 1 gibt dagegen die Union Bound der $M$–QAM allgemein an, wobei $M = 4$ eingesetzt ist.
- Da es aber bei 4–QAM keine inneren Symbole gibt, ist diese Schranke zu pessimistisch.
- Die sich ergebende „Union Bound” ist dann doppelt so groß wie die 4–PSK–Schranke.
(4) Hier ist wiederum der zweite Lösungsvorschlag richtig:
- Bei Graycodierung führt jeder Symbolfehler zu einem Bitfehler, wenn man nur benachbarte Regionen betrachtet: $p_{\rm B} \approx p_{\rm S}/2$.
- Außerdem gilt $E_{\rm S} = 2 \ E_{\rm B}$. Daraus folgt:
- $$p_{\rm B} = \frac{p_{\rm S}}{2} \le {\rm Q} \left [ \sqrt{ { E_{\rm S}}/{ N_0}} \right ] = {\rm Q} \left [ \sqrt{ { 2E_{\rm B}}/{ N_0}} \right ] \hspace{0.05cm}.$$
- Wie in der Musterlösung zur Aufgabe 4.13 hergeleitet, gilt sogar exakt:
- $$p_{\rm B} = {\rm Q} \left [ \sqrt{ { 2E_{\rm B}}/{ N_0}} \right ] \hspace{0.05cm}.$$
- Bei dieser Herleitung wurde verwendet, dass die 4–QAM durch zwei orthogonale BPSK–Modulationen (mit Cosinus– bzw. Minus–Sinusträger) dargestellt werden kann.
- Somit ist die Bitfehlerwahrscheinlichkeit der 4–QAM und damit auch der 4–PSK in Abhängigkeit von $E_{\rm B}/N_0$ die gleiche wie für BPSK.
Alle Ergebnisse der Aufgabe können mit dem interaktiven Applet M–stufiges Phase Shift Keying und Union Bound per Simulation überprüft werden.