Difference between revisions of "Aufgaben:Exercise 4.6: OVSF Codes"

From LNTwww
m (Textersetzung - „*Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.“ durch „ “)
Line 5: Line 5:
 
}}
 
}}
  
[[File:P_ID1975__Mod_Z_5_4.png|right|frame|Baumstruktur zur Konstruktion eines OVSF–Codes]]
+
[[File:P_ID1975__Mod_Z_5_4.png|right|frame|Baumstruktur zur Konstruktion <br>eines OVSF–Codes]]
 
Die Spreizcodes für UMTS sollen
 
Die Spreizcodes für UMTS sollen
 
*alle zueinander orthogonal sein, um gegenseitige Beeinflussung der Teilnehmer zu vermeiden,
 
*alle zueinander orthogonal sein, um gegenseitige Beeinflussung der Teilnehmer zu vermeiden,
*möglichst flexibel sein, um unterschiedliche $J \RightarrowSpreizfaktoren zu realisieren.
+
*möglichst flexibel sein, um unterschiedliche Spreizfaktoren&nbsp; $J$&nbsp; zu realisieren.
  
  
Ein Beispiel hierfür sind die so genannten '''Codes mit variablem Spreizfaktor''' (englisch: ''Orthogonal Variable Spreading Factor'', OVSF), die Spreizcodes der Längen von $J = 4$ bis $J = 512$ bereitstellen. Diese können, wie in der Grafik zu sehen ist, mit Hilfe eines Codebaums erstellt werden. Dabei entstehen bei jeder Verzweigung aus einem Code $\mathcal{C}$ zwei neue Codes
+
Ein Beispiel hierfür sind die so genannten&nbsp; '''Codes mit variablem Spreizfaktor'''&nbsp; (englisch:&nbsp; ''Orthogonal Variable Spreading Factor'',&nbsp; '''OVSF'''), die Spreizcodes der Längen von&nbsp; $J = 4$&nbsp; bis&nbsp; $J = 512$&nbsp; bereitstellen. Diese können, wie in der Grafik zu sehen ist, mit Hilfe eines Codebaums erstellt werden. Dabei entstehen bei jeder Verzweigung aus einem Code&nbsp; $\mathcal{C}$&nbsp; zwei neue Codes
 
*$(+\mathcal{C} \  +\hspace{-0.05cm}\mathcal{C})$,
 
*$(+\mathcal{C} \  +\hspace{-0.05cm}\mathcal{C})$,
 
*$(+\mathcal{C}\  -\hspace{-0.05cm}\mathcal{C})$.
 
*$(+\mathcal{C}\  -\hspace{-0.05cm}\mathcal{C})$.
  
  
Die Grafik verdeutlicht das hier angegebene Prinzip am Beispiel $J = 4$. Nummeriert man die Spreizfolgen von $0$ bis $J –1$ durch, so ergeben sich hier die Spreizfolgen
+
Die Grafik verdeutlicht das hier angegebene Prinzip am Beispiel&nbsp; $J = 4$.  
 +
 
 +
Nummeriert man die Spreizfolgen von&nbsp; $0$&nbsp; bis&nbsp; $J –1$&nbsp; durch, so ergeben sich hier die Spreizfolgen
 
:$$ \langle c_\nu^{(0)}\rangle \ = \ {+\hspace{-0.05cm}1}\hspace{0.15cm} {+\hspace{-0.05cm}1} \hspace{0.15cm} {+\hspace{-0.05cm}1}\hspace{0.15cm} {+\hspace{-0.05cm}1} \hspace{0.05cm},\hspace{0.3cm} \langle c_\nu^{(1)}\rangle = {+\hspace{-0.05cm}1}\hspace{0.15cm} {+\hspace{-0.05cm}1} \hspace{0.15cm} {-\hspace{-0.05cm}1}\hspace{0.15cm} {-\hspace{-0.05cm}1} \hspace{0.05cm},$$  
 
:$$ \langle c_\nu^{(0)}\rangle \ = \ {+\hspace{-0.05cm}1}\hspace{0.15cm} {+\hspace{-0.05cm}1} \hspace{0.15cm} {+\hspace{-0.05cm}1}\hspace{0.15cm} {+\hspace{-0.05cm}1} \hspace{0.05cm},\hspace{0.3cm} \langle c_\nu^{(1)}\rangle = {+\hspace{-0.05cm}1}\hspace{0.15cm} {+\hspace{-0.05cm}1} \hspace{0.15cm} {-\hspace{-0.05cm}1}\hspace{0.15cm} {-\hspace{-0.05cm}1} \hspace{0.05cm},$$  
 
:$$\langle c_\nu^{(2)}\rangle \ = \ {+\hspace{-0.05cm}1}\hspace{0.15cm} {-\hspace{-0.05cm}1} \hspace{0.15cm} {+\hspace{-0.05cm}1}\hspace{0.15cm} {-\hspace{-0.05cm}1} \hspace{0.05cm},\hspace{0.3cm} \langle c_\nu^{(3)}\rangle = {+\hspace{-0.05cm}1}\hspace{0.15cm} {-\hspace{-0.05cm}1} \hspace{0.15cm} {-\hspace{-0.05cm}1}\hspace{0.15cm} {+\hspace{-0.05cm}1} \hspace{0.05cm}.$$
 
:$$\langle c_\nu^{(2)}\rangle \ = \ {+\hspace{-0.05cm}1}\hspace{0.15cm} {-\hspace{-0.05cm}1} \hspace{0.15cm} {+\hspace{-0.05cm}1}\hspace{0.15cm} {-\hspace{-0.05cm}1} \hspace{0.05cm},\hspace{0.3cm} \langle c_\nu^{(3)}\rangle = {+\hspace{-0.05cm}1}\hspace{0.15cm} {-\hspace{-0.05cm}1} \hspace{0.15cm} {-\hspace{-0.05cm}1}\hspace{0.15cm} {+\hspace{-0.05cm}1} \hspace{0.05cm}.$$
Nach dieser Nomenklatur gibt es für den Spreizfaktor $J = 8$ die Spreizfolgen $\langle c_{\nu}^{(0)} \rangle, \ \text{...} \  ,\langle c_{\nu}^{(7)} \rangle$.
+
Nach dieser Nomenklatur gibt es für den Spreizfaktor&nbsp;  $J = 8$&nbsp; die Spreizfolgen&nbsp; $\langle c_{\nu}^{(0)} \rangle, \ \text{...} \  ,\langle c_{\nu}^{(7)} \rangle$.
  
Anzumerken ist, dass kein Vorgänger und Nachfolger eines Codes von anderen Teilnehmern benutzt werden darf. Im Beispiel könnten also vier Spreizcodes mit Spreizfaktor $J = 4$ verwendet werden oder die drei gelb hinterlegten Codes – einmal mit $J = 2$ und zweimal mit $J = 4$.
+
Anzumerken ist, dass kein Vorgänger und Nachfolger eines Codes von anderen Teilnehmern benutzt werden darf.  
 +
*Im Beispiel könnten also vier Spreizcodes mit dem Spreizfaktor&nbsp; $J = 4$&nbsp; verwendet werden, oder  
 +
*die drei gelb hinterlegten Codes – einmal mit&nbsp; $J = 2$&nbsp; und zweimal mit&nbsp; $J = 4$.
  
  
Line 30: Line 34:
  
 
''Hinweise:''  
 
''Hinweise:''  
*Die Aufgabegehört zum Kapitel [[Beispiele_von_Nachrichtensystemen/Nachrichtentechnische_Aspekte_von_UMTS|Nachrichtentechnische Aspekte von UMTS]].
+
*Die Aufgabegehört zum Kapitel&nbsp; [[Beispiele_von_Nachrichtensystemen/Nachrichtentechnische_Aspekte_von_UMTS|Nachrichtentechnische Aspekte von UMTS]].
*Bezug genommen wird insbesondere auf die Seite [[Beispiele_von_Nachrichtensystemen/Nachrichtentechnische_Aspekte_von_UMTS#Spreizcodes_und_Verw.C3.BCrfelung_bei_UMTS|Spreizcodes und Verwürfelung bei UMTS]].
+
*Bezug genommen wird insbesondere auf die Seite&nbsp; [[Beispiele_von_Nachrichtensystemen/Nachrichtentechnische_Aspekte_von_UMTS#Spreizcodes_und_Verw.C3.BCrfelung_bei_UMTS|Spreizcodes und Verwürfelung bei UMTS]].
 
   
 
   
  
Line 41: Line 45:
 
<quiz display=simple>
 
<quiz display=simple>
  
{Konstruieren Sie das Baumdiagramm für $J = 8$. Welche OVSF–Codes ergeben sich daraus?
+
{Konstruieren Sie das Baumdiagramm für&nbsp; $J = 8$. Welche OVSF–Codes ergeben sich daraus?
 
|type="[]"}
 
|type="[]"}
 
+ $\langle c_{\nu}^{(1)} \rangle  = +1 +1 +1 +1 –1 –1 –1 –1$,
 
+ $\langle c_{\nu}^{(1)} \rangle  = +1 +1 +1 +1 –1 –1 –1 –1$,
Line 48: Line 52:
 
+ $\langle c_{\nu}^{(7)} \rangle  = +1 –1 –1 +1 –1 +1 +1 –1$.
 
+ $\langle c_{\nu}^{(7)} \rangle  = +1 –1 –1 +1 –1 +1 +1 –1$.
  
{Wieviele UMTS–Teilnehmer können mit $J = 8$ maximal bedient werden?
+
{Wieviele UMTS–Teilnehmer können mit&nbsp; $J = 8$&nbsp; maximal bedient werden?
 
|type="{}"}
 
|type="{}"}
 
$K_{\rm max} \ = \ ${ 8 3% }
 
$K_{\rm max} \ = \ ${ 8 3% }
  
{Wieviele Teilnehmer können versorgt werden, wenn drei von ihnen einen Spreizcode mit $J = 4$ verwenden sollen?
+
{Wieviele Teilnehmer können versorgt werden, wenn drei von ihnen einen Spreizcode mit&nbsp; $J = 4$&nbsp; verwenden sollen?
 
|type="{}"}
 
|type="{}"}
 
$K \ = \ $ { 5 3% }
 
$K \ = \ $ { 5 3% }
  
{Gehen Sie von einer Baumstruktur für $J = 32$ aus. Ist folgende Zuweisung machbar: <br>Zweimal $J = 4$, einmal $J = 8$, zweimal $J = 16$, achtmal $J = 32$?
+
{Gehen Sie von einer Baumstruktur für&nbsp; $J = 32$&nbsp; aus. Ist die folgende Zuweisung machbar: <br>Zweimal&nbsp; $J = 4$, einmal&nbsp; $J = 8$, zweimal&nbsp; $J = 16$,&nbsp; achtmal $J = 32$&nbsp;?
 
|type="()"}
 
|type="()"}
 
+ Ja.
 
+ Ja.

Revision as of 13:31, 20 August 2019

Baumstruktur zur Konstruktion
eines OVSF–Codes

Die Spreizcodes für UMTS sollen

  • alle zueinander orthogonal sein, um gegenseitige Beeinflussung der Teilnehmer zu vermeiden,
  • möglichst flexibel sein, um unterschiedliche Spreizfaktoren  $J$  zu realisieren.


Ein Beispiel hierfür sind die so genannten  Codes mit variablem Spreizfaktor  (englisch:  Orthogonal Variable Spreading FactorOVSF), die Spreizcodes der Längen von  $J = 4$  bis  $J = 512$  bereitstellen. Diese können, wie in der Grafik zu sehen ist, mit Hilfe eines Codebaums erstellt werden. Dabei entstehen bei jeder Verzweigung aus einem Code  $\mathcal{C}$  zwei neue Codes

  • $(+\mathcal{C} \ +\hspace{-0.05cm}\mathcal{C})$,
  • $(+\mathcal{C}\ -\hspace{-0.05cm}\mathcal{C})$.


Die Grafik verdeutlicht das hier angegebene Prinzip am Beispiel  $J = 4$.

Nummeriert man die Spreizfolgen von  $0$  bis  $J –1$  durch, so ergeben sich hier die Spreizfolgen

$$ \langle c_\nu^{(0)}\rangle \ = \ {+\hspace{-0.05cm}1}\hspace{0.15cm} {+\hspace{-0.05cm}1} \hspace{0.15cm} {+\hspace{-0.05cm}1}\hspace{0.15cm} {+\hspace{-0.05cm}1} \hspace{0.05cm},\hspace{0.3cm} \langle c_\nu^{(1)}\rangle = {+\hspace{-0.05cm}1}\hspace{0.15cm} {+\hspace{-0.05cm}1} \hspace{0.15cm} {-\hspace{-0.05cm}1}\hspace{0.15cm} {-\hspace{-0.05cm}1} \hspace{0.05cm},$$
$$\langle c_\nu^{(2)}\rangle \ = \ {+\hspace{-0.05cm}1}\hspace{0.15cm} {-\hspace{-0.05cm}1} \hspace{0.15cm} {+\hspace{-0.05cm}1}\hspace{0.15cm} {-\hspace{-0.05cm}1} \hspace{0.05cm},\hspace{0.3cm} \langle c_\nu^{(3)}\rangle = {+\hspace{-0.05cm}1}\hspace{0.15cm} {-\hspace{-0.05cm}1} \hspace{0.15cm} {-\hspace{-0.05cm}1}\hspace{0.15cm} {+\hspace{-0.05cm}1} \hspace{0.05cm}.$$

Nach dieser Nomenklatur gibt es für den Spreizfaktor  $J = 8$  die Spreizfolgen  $\langle c_{\nu}^{(0)} \rangle, \ \text{...} \ ,\langle c_{\nu}^{(7)} \rangle$.

Anzumerken ist, dass kein Vorgänger und Nachfolger eines Codes von anderen Teilnehmern benutzt werden darf.

  • Im Beispiel könnten also vier Spreizcodes mit dem Spreizfaktor  $J = 4$  verwendet werden, oder
  • die drei gelb hinterlegten Codes – einmal mit  $J = 2$  und zweimal mit  $J = 4$.




Hinweise:



Fragebogen

1

Konstruieren Sie das Baumdiagramm für  $J = 8$. Welche OVSF–Codes ergeben sich daraus?

$\langle c_{\nu}^{(1)} \rangle = +1 +1 +1 +1 –1 –1 –1 –1$,
$\langle c_{\nu}^{(3)} \rangle = +1 +1 –1 –1 +1 +1 –1 –1$,
$\langle c_{\nu}^{(5)} \rangle = +1 –1 +1 –1 –1 +1 –1 +1$,
$\langle c_{\nu}^{(7)} \rangle = +1 –1 –1 +1 –1 +1 +1 –1$.

2

Wieviele UMTS–Teilnehmer können mit  $J = 8$  maximal bedient werden?

$K_{\rm max} \ = \ $

3

Wieviele Teilnehmer können versorgt werden, wenn drei von ihnen einen Spreizcode mit  $J = 4$  verwenden sollen?

$K \ = \ $

4

Gehen Sie von einer Baumstruktur für  $J = 32$  aus. Ist die folgende Zuweisung machbar:
Zweimal  $J = 4$, einmal  $J = 8$, zweimal  $J = 16$,  achtmal $J = 32$ ?

Ja.
Nein.


Musterlösung

OVSF–Baumstruktur für $J = 8$

(1)  Die Grafik zeigt die OVSF–Baumstruktur für $J = 8$ Nutzer. Daraus ist ersichtlich, dass die Lösungsvorschläge 1, 3 und 4 zutreffen, nicht jedoch der zweite.


(2)  Wird jedem Nutzer ein Spreizcode mit $J = 8$ zugewiesen, so können $\underline{K_{\rm max} = 8}$ Teilnehmer versorgt werden.


(3)  Wenn drei Teilnehmer mit $J = 4$ versorgt werden, können nur mehr zwei Teilnehmer durch eine Spreizfolge mit $J = 8$ bedient werden (siehe beispielhafte gelbe Hinterlegung in obiger Grafik)   ⇒   $\underline{K = 5}$.


(4)  Wir bezeichnen mit

  • $K_{4} = 2$ die Anzahl der Spreizfolgen mit $J = 4$,
  • $K_{8} = 1$ die Anzahl der Spreizfolgen mit $J = 8$,
  • $K_{16} = 2$ die Anzahl der Spreizfolgen mit $J = 16$,
  • $K_{32} = 8$ die Anzahl der Spreizfolgen mit $J = 32$.


Dann muss folgende Bedingung erfüllt sein:

$$ K_4 \cdot \frac{32}{4} + K_8 \cdot \frac{32}{8} +K_{16} \cdot \frac{32}{16} +K_{32} \cdot \frac{32}{32} \le 32 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} K_4 \cdot8 + K_8 \cdot 4 +K_{16} \cdot 2 +K_{32} \cdot1 \le 32 \hspace{0.05cm}.$$
  • Wegen $2 \cdot 8 + 1 \cdot 4 + 2 \cdot 2 + 8 = 32$ ist die gewünschte Belegung gerade noch erlaubt   ⇒   Antwort JA.
  • Die zweimalige Bereitstellung des Spreizgrads $J = 4$ blockiert zum Beispiel die obere Hälfte des Baums, nach der Versorgung der einen Spreizung mit $J = 8$, bleiben auf der $J = 8$–Ebene noch $3$ der $8$ Äste zu belegen, usw. und so fort.