Difference between revisions of "Aufgaben:Exercise 4.5: Locality Curve for DSB-AM"

From LNTwww
Line 5: Line 5:
 
[[File:P_ID751__Sig_A_4_5_neu.png|250px|right|frame|Spektrum des analytischen Signals]]
 
[[File:P_ID751__Sig_A_4_5_neu.png|250px|right|frame|Spektrum des analytischen Signals]]
  
Wir betrachten ein ähnliches Übertragungsszenario wie in der [[Aufgaben:Aufgabe_4.4:_Zeigerdiagramm_bei_ZSB-AM|Aufgabe 4.4]] (aber nicht das gleiche):
+
Wir betrachten ein ähnliches Übertragungsszenario wie in der  [[Aufgaben:Aufgabe_4.4:_Zeigerdiagramm_bei_ZSB-AM|Aufgabe 4.4]]  (aber nicht das gleiche):
* ein sinusförmiges Nachrichtensignal mit Amplitude $A_{\rm N} = 2 \ \text{V}$  und  Frequenz $f_{\rm N} = 10 \ \text{kHz}$,
+
* ein sinusförmiges Nachrichtensignal mit der Amplitude  $A_{\rm N} = 2 \ \text{V}$  und der Frequenz  $f_{\rm N} = 10 \ \text{kHz}$,
*ZSB-Amplitudenmodulation ohne Trägerunterdrückung mit Trägerfrequenz $f_{\rm T} = 50 \ \text{kHz}$.
+
*ZSB-Amplitudenmodulation ohne Trägerunterdrückung mit der Trägerfrequenz  $f_{\rm T} = 50 \ \text{kHz}$.
  
  
Nebenstehend sehen Sie die Spektralfunktion $S_+(f)$ des analytischen Signals $s_+(t)$ .  
+
Nebenstehend sehen Sie die Spektralfunktion  $S_+(f)$  des analytischen Signals  $s_+(t)$.  
  
 
Berücksichtigen Sie bei der Lösung, dass das äquivalente Tiefpass-Signal auch in der Form
 
Berücksichtigen Sie bei der Lösung, dass das äquivalente Tiefpass-Signal auch in der Form
Line 16: Line 16:
 
:$$s_{\rm TP}(t) = a(t) \cdot {\rm e}^{{\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm} \phi(t)} $$
 
:$$s_{\rm TP}(t) = a(t) \cdot {\rm e}^{{\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm} \phi(t)} $$
  
dargestellt werden kann, wobei $a(t) ≥ 0$ gelten soll. Für $\phi(t)$ ist der Wertebereich $–\pi < \phi(t) \leq +\pi$ zulässig und es gilt die allgemeingültige Gleichung:
+
dargestellt werden kann, wobei&nbsp; $a(t) ≥ 0$&nbsp; gelten soll. Für&nbsp; $\phi(t)$&nbsp; ist der Wertebereich&nbsp; $–\pi < \phi(t) \leq +\pi$&nbsp; zulässig und es gilt die allgemeingültige Gleichung:
 
   
 
   
 
:$$\phi(t)= {\rm arctan} \hspace{0.1cm}\frac{{\rm Im}\big[s_{\rm
 
:$$\phi(t)= {\rm arctan} \hspace{0.1cm}\frac{{\rm Im}\big[s_{\rm
 
TP}(t)\big]}{{\rm Re}\big[s_{\rm TP}(t)\big]}.$$
 
TP}(t)\big]}{{\rm Re}\big[s_{\rm TP}(t)\big]}.$$
 +
 +
 +
  
  
Line 26: Line 29:
  
 
''Hinweise:''  
 
''Hinweise:''  
*Die Aufgabe gehört zum  Kapitel [[Signaldarstellung/Äquivalentes_Tiefpass-Signal_und_zugehörige_Spektralfunktion|Äquivalentes Tiefpass-Signal und zugehörige Spektralfunktion]].
+
*Die Aufgabe gehört zum  Kapitel&nbsp; [[Signaldarstellung/Äquivalentes_Tiefpass-Signal_und_zugehörige_Spektralfunktion|Äquivalentes Tiefpass-Signal und zugehörige Spektralfunktion]].
 
   
 
   
*Sie können Ihre Lösung mit dem interaktiven Applet [[Applets:Physikalisches_Signal_%26_Äquivalentes_TP-Signal|Physikalisches Signal & Äquivalentes TP-Signal]] &nbsp; &rArr; &nbsp; Ortskurve überprüfen.
+
*Sie können Ihre Lösung mit dem interaktiven Applet&nbsp; [[Applets:Physikalisches_Signal_%26_Äquivalentes_TP-Signal|Physikalisches Signal & Äquivalentes TP-Signal]]&nbsp; &nbsp; &rArr; &nbsp; &bdquo;Ortskurve&rdquo; überprüfen.
  
 
   
 
   
Line 34: Line 37:
  
 
<quiz display=simple>
 
<quiz display=simple>
{Berechnen Sie das äquivalente Tiefpass-Signal $s_{\rm TP}(t)$ im Frequenz– und Zeitbereich. Welchen Wert besitzt $s_{\rm TP}(t)$ zum Startzeitpunkt $t = 0$?
+
{Berechnen Sie das äquivalente Tiefpass-Signal&nbsp; $s_{\rm TP}(t)$&nbsp; im Frequenz– und Zeitbereich. Welchen Wert besitzt&nbsp; $s_{\rm TP}(t)$&nbsp; zum Startzeitpunkt&nbsp; $t = 0$?
 
|type="{}"}
 
|type="{}"}
 
$\text{Re}[s_{\text{TP}}(t=0)]\ = \ $  { 1 3% }  &nbsp;$\text{V}$
 
$\text{Re}[s_{\text{TP}}(t=0)]\ = \ $  { 1 3% }  &nbsp;$\text{V}$
 
$\text{Im}[s_{\text{TP}}(t=0 )]\ = \ $ { 0. } &nbsp;$\text{V}$
 
$\text{Im}[s_{\text{TP}}(t=0 )]\ = \ $ { 0. } &nbsp;$\text{V}$
  
{Welche Werte weist $s_{\rm TP}(t)$ zu den Zeitpunkten $t = 10 \ {\rm &micro;} \text{s}= T_0/10$, &nbsp; &nbsp; $t = 25 \ {\rm &micro;} \text{s}= T_0/4$, &nbsp; &nbsp; $t = 75 \ {\rm &micro;} \text{s}= 3T_0/4$ und $T_0 = 100 \ {\rm &micro;}s$ auf? <br>Zeigen Sie, dass alle Werte rein reell sind.
+
{Welche Werte weist&nbsp; $s_{\rm TP}(t)$&nbsp; zu den Zeitpunkten&nbsp; $t = 10 \ {\rm &micro;} \text{s}= T_0/10$, &nbsp; &nbsp; $t = 25 \ {\rm &micro;} \text{s}= T_0/4$, &nbsp; &nbsp; $t = 75 \ {\rm &micro;} \text{s}= 3T_0/4$&nbsp; und&nbsp; $T_0 = 100 \ {\rm &micro;}s$ auf? <br>Zeigen Sie, dass alle Werte rein reell sind.
 
|type="{}"}
 
|type="{}"}
 
$\text{Re}[s_{\text{TP}}(t=10 \ {\rm &micro;} \text{s})]\ = \ $ { 2.176 3% } &nbsp;$\text{V}$
 
$\text{Re}[s_{\text{TP}}(t=10 \ {\rm &micro;} \text{s})]\ = \ $ { 2.176 3% } &nbsp;$\text{V}$
Line 46: Line 49:
 
$\text{Re}[s_{\text{TP}}(t=100 \ {\rm &micro;} \text{s})]\ = \ $ { 1 3% } &nbsp;$\text{V}$
 
$\text{Re}[s_{\text{TP}}(t=100 \ {\rm &micro;} \text{s})]\ = \ $ { 1 3% } &nbsp;$\text{V}$
  
{Wie lautet die Betragsfunktion $a(t)$? Welche Werte ergeben sich zu den Zeiten $t = 25 \ {\rm &micro;} \text{s}$ und $t = 75 \ {\rm &micro;} \text{s}$?
+
{Wie lautet die Betragsfunktion&nbsp; $a(t)$&nbsp; im Zeitbereich? Welche Werte ergeben sich zu den Zeiten&nbsp; $t = 25 \ {\rm &micro;} \text{s}$&nbsp; und&nbsp; $t = 75 \ {\rm &micro;} \text{s}$?
 
|type="{}"}
 
|type="{}"}
 
$a(t=25 \ {\rm &micro;} \text{s})\ = \ $ { 3 3% } &nbsp;$\text{V}$
 
$a(t=25 \ {\rm &micro;} \text{s})\ = \ $ { 3 3% } &nbsp;$\text{V}$
 
$a(t=75 \ {\rm &micro;} \text{s})\ = \ $ { 1 3% } &nbsp;$\text{V}$
 
$a(t=75 \ {\rm &micro;} \text{s})\ = \ $ { 1 3% } &nbsp;$\text{V}$
  
{Geben Sie die Phasenfunktion $\phi(t)$ allgemein an. Welche Werte ergeben sich zu den Zeiten $t = 25 \ {\rm &micro;} \text{s}$ und $t = 75 \ {\rm &micro;} \text{s}$?
+
{Geben Sie die Phasenfunktion&nbsp; $\phi(t)$&nbsp;  im Zeitbereich allgemein an. Welche Werte ergeben sich zu den Zeiten&nbsp; $t = 25 \ {\rm &micro;} \text{s}$&nbsp; und&nbsp; $t = 75 \ {\rm &micro;} \text{s}$?
 
|type="{}"}
 
|type="{}"}
 
$\phi(t=25 \ {\rm &micro;} \text{s}) \ = \ $ { 0. } &nbsp;$\text{Grad}$
 
$\phi(t=25 \ {\rm &micro;} \text{s}) \ = \ $ { 0. } &nbsp;$\text{Grad}$

Revision as of 17:30, 7 October 2019

Spektrum des analytischen Signals

Wir betrachten ein ähnliches Übertragungsszenario wie in der  Aufgabe 4.4  (aber nicht das gleiche):

  • ein sinusförmiges Nachrichtensignal mit der Amplitude  $A_{\rm N} = 2 \ \text{V}$  und der Frequenz  $f_{\rm N} = 10 \ \text{kHz}$,
  • ZSB-Amplitudenmodulation ohne Trägerunterdrückung mit der Trägerfrequenz  $f_{\rm T} = 50 \ \text{kHz}$.


Nebenstehend sehen Sie die Spektralfunktion  $S_+(f)$  des analytischen Signals  $s_+(t)$.

Berücksichtigen Sie bei der Lösung, dass das äquivalente Tiefpass-Signal auch in der Form

$$s_{\rm TP}(t) = a(t) \cdot {\rm e}^{{\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm} \phi(t)} $$

dargestellt werden kann, wobei  $a(t) ≥ 0$  gelten soll. Für  $\phi(t)$  ist der Wertebereich  $–\pi < \phi(t) \leq +\pi$  zulässig und es gilt die allgemeingültige Gleichung:

$$\phi(t)= {\rm arctan} \hspace{0.1cm}\frac{{\rm Im}\big[s_{\rm TP}(t)\big]}{{\rm Re}\big[s_{\rm TP}(t)\big]}.$$





Hinweise:


Fragebogen

1

Berechnen Sie das äquivalente Tiefpass-Signal  $s_{\rm TP}(t)$  im Frequenz– und Zeitbereich. Welchen Wert besitzt  $s_{\rm TP}(t)$  zum Startzeitpunkt  $t = 0$?

$\text{Re}[s_{\text{TP}}(t=0)]\ = \ $

 $\text{V}$
$\text{Im}[s_{\text{TP}}(t=0 )]\ = \ $

 $\text{V}$

2

Welche Werte weist  $s_{\rm TP}(t)$  zu den Zeitpunkten  $t = 10 \ {\rm µ} \text{s}= T_0/10$,     $t = 25 \ {\rm µ} \text{s}= T_0/4$,     $t = 75 \ {\rm µ} \text{s}= 3T_0/4$  und  $T_0 = 100 \ {\rm µ}s$ auf?
Zeigen Sie, dass alle Werte rein reell sind.

$\text{Re}[s_{\text{TP}}(t=10 \ {\rm µ} \text{s})]\ = \ $

 $\text{V}$
$\text{Re}[s_{\text{TP}}(t=25 \ {\rm µ} \text{s})] \ = \ $

 $\text{V}$
$\text{Re}[s_{\text{TP}}(t=75 \ {\rm µ} \text{s})]\ = \ $

 $\text{V}$
$\text{Re}[s_{\text{TP}}(t=100 \ {\rm µ} \text{s})]\ = \ $

 $\text{V}$

3

Wie lautet die Betragsfunktion  $a(t)$  im Zeitbereich? Welche Werte ergeben sich zu den Zeiten  $t = 25 \ {\rm µ} \text{s}$  und  $t = 75 \ {\rm µ} \text{s}$?

$a(t=25 \ {\rm µ} \text{s})\ = \ $

 $\text{V}$
$a(t=75 \ {\rm µ} \text{s})\ = \ $

 $\text{V}$

4

Geben Sie die Phasenfunktion  $\phi(t)$  im Zeitbereich allgemein an. Welche Werte ergeben sich zu den Zeiten  $t = 25 \ {\rm µ} \text{s}$  und  $t = 75 \ {\rm µ} \text{s}$?

$\phi(t=25 \ {\rm µ} \text{s}) \ = \ $

 $\text{Grad}$
$\phi(t=75\ {\rm µ} \text{s})\ = \ $

 $\text{Grad}$


Musterlösung

Ortskurve zur Zeit $t = 0$

(1)  Verschiebt man alle Diraclinien jeweils um $f_{\rm T} = 50 \ \text{kHz}$ nach links, so liegen diese bei $-\hspace{-0.08cm}10 \ \text{kHz}$, $0$ und $+10 \ \text{kHz}$.
Die Gleichung $s_{\rm TP}(t)$ lautet mit $\omega_{10} = 2 \pi \cdot 10 \ \text{kHz}$:

$$s_{\rm TP}(t) = {\rm 1 \hspace{0.05cm} V} - {\rm j}\cdot {\rm 1 \hspace{0.05cm} V} \cdot {\rm e}^{{\rm j}\hspace{0.05cm} \omega_{\rm 10} \hspace{0.05cm} t }+{\rm j}\cdot {\rm 1 \hspace{0.05cm} V} \cdot {\rm e}^{-{\rm j}\hspace{0.05cm} \omega_{\rm 10} \hspace{0.05cm} t }$$
$$\Rightarrow \hspace{0.3cm} s_{\rm TP}(t = 0) = {\rm 1 \hspace{0.05cm} V} - {\rm j}\cdot {\rm 1 \hspace{0.05cm} V} +{\rm j}\cdot {\rm 1 \hspace{0.05cm} V}= {\rm 1 \hspace{0.05cm} V}.$$
$$\Rightarrow \hspace{0.3cm} {\rm Re}[s_{\rm TP}(t = 0) ] \hspace{0.15 cm}\underline{= {+\rm 1 \hspace{0.05cm} V}}, \hspace{0.2cm}{\rm Im}[s_{\rm TP}(t = 0) ] \hspace{0.15 cm}\underline{= 0} .$$


(2)  Obige Gleichung kann man nach dem Satz von Euler mit $T_0 = 1/f_{\rm N} = 100 \ {\rm µ} \text{s}$ wie folgt umformen:

$$\frac{s_{\rm TP}(t)}{{\rm 1 \hspace{0.05cm} V}}\hspace{-0.05cm} =\hspace{-0.05cm}1\hspace{-0.05cm} - \hspace{-0.05cm}{\rm j}\cdot \cos({ \omega_{\rm 10}\hspace{0.05cm} t }) \hspace{-0.05cm}+\hspace{-0.05cm} \sin({ \omega_{\rm 10}\hspace{0.05cm} t }) \hspace{-0.05cm}+\hspace{-0.05cm}{\rm j}\cdot \cos({ \omega_{\rm 10}\hspace{0.05cm} t })\hspace{-0.05cm} + \hspace{-0.05cm} \sin({ \omega_{\rm 10}\hspace{0.05cm} t }) = 1+2 \cdot \sin(2 \pi {t}/{T_0}) .$$

Damit ist gezeigt, dass $s_{\rm TP}(t)$ für alle Zeiten $t$ reell ist. Für die gesuchten Zahlenwerte erhält man:

$$s_{\rm TP}(t = {\rm 10 \hspace{0.1cm} {\rm µ} s}) = {\rm 1 \hspace{0.05cm} V} \cdot \left[1+2 \cdot \sin(36^\circ)\right]\hspace{0.15 cm}\underline{={{\rm +2.176 \hspace{0.05cm} V}}},$$
$$s_{\rm TP}(t = {\rm 25 \hspace{0.1cm} {\rm µ} s}) = {\rm 1 \hspace{0.05cm} V} \cdot \left[1+2 \cdot \sin(90^\circ)\right]\hspace{0.15 cm}\underline{={{\rm +3 \hspace{0.05cm} V}}},$$
$$s_{\rm TP}(t = {\rm 75 \hspace{0.1cm} {\rm µ} s}) = {\rm 1 \hspace{0.05cm} V} \cdot \left[1+2 \cdot \sin(270^\circ)\right]\hspace{0.15 cm}\underline{= -{{\rm 1 \hspace{0.05cm} V}}},$$
$$s_{\rm TP}(t = {\rm 100 \hspace{0.1cm}{\rm µ} s}) = s_{\rm TP}(t = 0) \hspace{0.15 cm}\underline{={{\rm +1 \hspace{0.05cm} V}}}.$$


(3)  Definitionsgemäß gilt $a(t) = |s_{\rm TP}(t)|$. Damit erhält man folgende Zahlenwerte:

$$a(t = {\rm 25 \hspace{0.1cm} {\rm µ} s}) = s_{\rm TP}(t = {\rm 25 \hspace{0.05cm}{\rm µ} s}) \hspace{0.15 cm}\underline{= {\rm +3 \hspace{0.05cm} V}} , \hspace{4.15 cm}$$
$$a(t = {\rm 75 \hspace{0.1cm} {\rm µ} s}) = |s_{\rm TP}(t = {\rm 75 \hspace{0.05cm} {\rm µ} s})| \hspace{0.15 cm}\underline{= {\rm +1 \hspace{0.05cm} V}} .$$


(4)  Allgemein gilt für die Phasenfunktion:

$$\phi(t)= {\rm arc} \left[s_{\rm TP}(t)\right]= {\rm arctan} \hspace{0.1cm}\frac{{\rm Im}\left[s_{\rm TP}(t)\right]}{{\rm Re}\left[s_{\rm TP}(t)\right]}$$

Aufgrund der Tatsache, dass hier für alle Zeiten ${\rm Im}[s_{\rm TP}(t)] = 0$ ist, erhält man hieraus das Ergebnis:

  • Falls ${\rm Re}[s_{\rm TP}(t)] > 0$ gilt, ist die Phase ist $\phi(t) = 0$.
  • Dagegen gilt bei negativem Realteil:     $\phi(t) = \pi$.


Wir beschränken uns hier auf den Zeitbereich einer Periode:   $0 \leq t \leq T_0$.

  • Im Bereich zwischen $t_1$ und $t_2$ liegt eine Phase von $180^\circ$ vor, ansonsten gilt $\text{Re}[s_{\rm TP}(t)] \geq 0$.
  • Zur Berechung von $t_1$ kann das Ergebnis der Teilaufgabe (2) herangezogen werden:
$$\sin(2 \pi \cdot {t_1}/{T_0}) = -0.5 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} 2 \pi \cdot {t_1}/{T_0} = 2 \pi \cdot {7}/{12}\hspace{0.3cm}{\rm (entspricht}\hspace{0.2cm}210^\circ )$$
  • Daraus erhält man $t_1 = 7/12 · T_0 = 58.33 \ {\rm µ} \text{s}$.
  • Durch ähnliche Überlegungen kommt man zum Ergebnis: $t_2 = 11/12 · T_0 = 91.63 \ {\rm µ} \text{s}$.


Die gesuchten Werte sind somit $\phi(t = 25 \ {\rm µ} \text{s}) \; \underline { = 0}$ und $\phi(t = 75 \ {\rm µ} \text{s}) \; \underline { = 180^{\circ}}\; (= \pi)$.