Difference between revisions of "Aufgaben:Exercise 1.3: Measured Step Response"

From LNTwww
Line 4: Line 4:
 
[[File:P_ID817__LZI_A_1_3.png |right|frame|Gemessene Sprungantwort]]
 
[[File:P_ID817__LZI_A_1_3.png |right|frame|Gemessene Sprungantwort]]
 
An den Eingang eines linearen zeitinvarianten (LZI–)Übertragungssystems  
 
An den Eingang eines linearen zeitinvarianten (LZI–)Übertragungssystems  
*mit dem Frequenzgang $H(f)$  
+
*mit dem Frequenzgang   $H(f)$  
*und der Impulsantwort $h(t)$  
+
*und der Impulsantwort  $h(t)$  
  
  
 
wird ein sprungförmiges Signal angelegt (blaue Kurve):  
 
wird ein sprungförmiges Signal angelegt (blaue Kurve):  
 
:$$x_1(t) = 4\hspace{0.05cm} {\rm V} \cdot \gamma(t).$$
 
:$$x_1(t) = 4\hspace{0.05cm} {\rm V} \cdot \gamma(t).$$
Das gemessene Ausgangssignal $y_1(t)$ hat dann den unten dargestellten Verlauf. Mit $T = 2 \,{\rm ms}$ kann dieses Signal im Bereich von $0$ bis $T$ wie folgt beschrieben werden:  
+
Das gemessene Ausgangssignal  $y_1(t)$  hat dann den unten dargestellten Verlauf.  
 +
*Mit  $T = 2 \,{\rm ms}$  kann dieses Signal im Bereich von  $0$  bis  $T$  wie folgt beschrieben werden:  
 
:$$y_1(t) = 2 \hspace{0.05cm}{\rm V} \cdot\big[ {t}/{T} - 0.5 \cdot ({t}/{T})^2\big].$$
 
:$$y_1(t) = 2 \hspace{0.05cm}{\rm V} \cdot\big[ {t}/{T} - 0.5 \cdot ({t}/{T})^2\big].$$
  
Ab $t = T $ ist $y_1(t)$ konstant gleich $1 \,{\rm V}$.  
+
*Ab  $t = T $  ist  $y_1(t)$  konstant gleich  $1 \,{\rm V}$.  
  
In der letzten Teilaufgabe '''(5)''' wird nach dem Ausgangssignal $y_2(t)$ gefragt, wenn am Eingang ein symmetrischer Rechteckimpuls $x_2(t)$ der Dauer $T = 2 \hspace{0.05cm} {\rm ms}$ anliegt (siehe roter Kurvenzug in der oberen Grafik).
+
 
 +
In der letzten Teilaufgabe  '''(5)'''  wird nach dem Ausgangssignal  $y_2(t)$  gefragt, wenn am Eingang ein symmetrischer Rechteckimpuls  $x_2(t)$  der Dauer  $T = 2 \hspace{0.05cm} {\rm ms}$  anliegt (siehe roter Kurvenzug in der oberen Grafik).
 
   
 
   
 +
 +
 +
  
  
Line 23: Line 28:
  
 
''Hinweise:''  
 
''Hinweise:''  
*Die Aufgabe gehört zum  Kapitel [[Lineare_zeitinvariante_Systeme/Systembeschreibung_im_Zeitbereich|Systembeschreibung im Zeitbereich]]  
+
*Die Aufgabe gehört zum  Kapitel  [[Lineare_zeitinvariante_Systeme/Systembeschreibung_im_Zeitbereich|Systembeschreibung im Zeitbereich]]  
*Für den Rechteckimpuls $x_2(t)$ kann mit $A = 2 \hspace{0.05cm} \text{V}$ auch geschrieben werden:  
+
*Für den Rechteckimpuls  $x_2(t)$  kann mit  $A = 2 \hspace{0.05cm} \text{V}$  auch geschrieben werden:  
 
:$$x_2(t) = A \cdot \big [\gamma(t + {T}/{2}) - \gamma(t - {T}/{2})\big ].$$
 
:$$x_2(t) = A \cdot \big [\gamma(t + {T}/{2}) - \gamma(t - {T}/{2})\big ].$$
*Der Frequenzgang $H(f)$ des hier betrachteten LZI–Systems kann dem Angabenblatt zu [[Aufgaben:3.8_Dreimal_Faltung|Aufgabe 3.8]] im Buch „Signaldarstellung” entnommen werden. Allerdings sind die Abszissen– und Ordinatenparameter entsprechend anzupassen.  
+
*Der Frequenzgang  $H(f)$  des hier betrachteten LZI–Systems kann dem Angabenblatt zu  [[Aufgaben:3.8_Dreimal_Faltung|Aufgabe 3.8]]  im Buch „Signaldarstellung” entnommen werden. Allerdings sind die Abszissen– und Ordinatenparameter entsprechend anzupassen.  
*Zur Lösung der vorliegenden Aufgabe wird $H(f)$ jedoch nicht explizit benötigt.  
+
*Zur Lösung der vorliegenden Aufgabe wird  $H(f)$  jedoch nicht explizit benötigt.  
 
   
 
   
  
Line 38: Line 43:
 
{Welche Aussagen sind anhand der Grafik über das LZI–System möglich?
 
{Welche Aussagen sind anhand der Grafik über das LZI–System möglich?
 
|type="[]"}
 
|type="[]"}
- $H(f)$ beschreibt ein akausales System.  
+
- $H(f)$  beschreibt ein akausales System.  
+ $H(f)$ beschreibt ein kausales System.
+
+ $H(f)$  beschreibt ein kausales System.
+ $H(f)$ beschreibt einen Tiefpass.  
+
+ $H(f)$  beschreibt einen Tiefpass.  
- $H(f)$ beschreibt einen Hochpass.  
+
- $H(f)$  beschreibt einen Hochpass.  
  
  
Line 49: Line 54:
  
  
{Wie lautet die Sprungantwort $σ(t)$? Welcher Wert tritt bei $t = T/2$ auf?  
+
{Wie lautet die Sprungantwort  $σ(t)$? Welcher Wert tritt bei  $t = T/2$  auf?  
 
|type="{}"}
 
|type="{}"}
 
$σ(t = \rm 1 \: ms) \ = \ $ { 0.1875 5%  }
 
$σ(t = \rm 1 \: ms) \ = \ $ { 0.1875 5%  }
  
  
{Berechnen Sie die Impulsantwort $h(t)$ des Systems. <br>Welche Werte besitzt diese zu den Zeitpunkten $t = T/2$ und $t = T$?  
+
{Berechnen Sie die Impulsantwort&nbsp; $h(t)$&nbsp; des Systems. Welche Werte besitzt diese zu den Zeitpunkten&nbsp; $t = T/2$&nbsp; und&nbsp; $t = T$?  
 
|type="{}"}
 
|type="{}"}
 
$h(t = \rm 1 \: ms)  \ =\ $ { 125 } &nbsp;$\text {1/s}$
 
$h(t = \rm 1 \: ms)  \ =\ $ { 125 } &nbsp;$\text {1/s}$
 
$h(t = \rm 2 \: ms) \ =\ ${ 0. } &nbsp;$\text {1/s}$
 
$h(t = \rm 2 \: ms) \ =\ ${ 0. } &nbsp;$\text {1/s}$
  
{Am Eingang liegt der Rechteckimpuls $x_2(t)$ an. <br>Welches Ausgangssignal $y_2(t)$ ergibt sich zu den Zeiten $t_1 = -1  \text { ms}$, $t_2 = 0$ , $t_3 = +1  \text { ms}$ &nbsp;und&nbsp; $t_4 = +2  \text { ms}$?  
+
{Am Eingang liegt der Rechteckimpuls&nbsp; $x_2(t)$&nbsp; an. Welches Ausgangssignal&nbsp; $y_2(t)$&nbsp; ergibt sich zu den Zeiten&nbsp; $t_1 = -1  \text { ms}$,&nbsp; $t_2 = 0$ ,&nbsp; $t_3 = +1  \text { ms}$ &nbsp;und&nbsp; $t_4 = +2  \text { ms}$?  
 
|type="{}"}
 
|type="{}"}
 
$y_2(t = t_1) \ =\ $ { 0. } &nbsp;$\text {V}$
 
$y_2(t = t_1) \ =\ $ { 0. } &nbsp;$\text {V}$

Revision as of 10:35, 18 October 2019

Gemessene Sprungantwort

An den Eingang eines linearen zeitinvarianten (LZI–)Übertragungssystems

  • mit dem Frequenzgang  $H(f)$
  • und der Impulsantwort  $h(t)$


wird ein sprungförmiges Signal angelegt (blaue Kurve):

$$x_1(t) = 4\hspace{0.05cm} {\rm V} \cdot \gamma(t).$$

Das gemessene Ausgangssignal  $y_1(t)$  hat dann den unten dargestellten Verlauf.

  • Mit  $T = 2 \,{\rm ms}$  kann dieses Signal im Bereich von  $0$  bis  $T$  wie folgt beschrieben werden:
$$y_1(t) = 2 \hspace{0.05cm}{\rm V} \cdot\big[ {t}/{T} - 0.5 \cdot ({t}/{T})^2\big].$$
  • Ab  $t = T $  ist  $y_1(t)$  konstant gleich  $1 \,{\rm V}$.


In der letzten Teilaufgabe  (5)  wird nach dem Ausgangssignal  $y_2(t)$  gefragt, wenn am Eingang ein symmetrischer Rechteckimpuls  $x_2(t)$  der Dauer  $T = 2 \hspace{0.05cm} {\rm ms}$  anliegt (siehe roter Kurvenzug in der oberen Grafik).





Hinweise:

  • Die Aufgabe gehört zum Kapitel  Systembeschreibung im Zeitbereich
  • Für den Rechteckimpuls  $x_2(t)$  kann mit  $A = 2 \hspace{0.05cm} \text{V}$  auch geschrieben werden:
$$x_2(t) = A \cdot \big [\gamma(t + {T}/{2}) - \gamma(t - {T}/{2})\big ].$$
  • Der Frequenzgang  $H(f)$  des hier betrachteten LZI–Systems kann dem Angabenblatt zu  Aufgabe 3.8  im Buch „Signaldarstellung” entnommen werden. Allerdings sind die Abszissen– und Ordinatenparameter entsprechend anzupassen.
  • Zur Lösung der vorliegenden Aufgabe wird  $H(f)$  jedoch nicht explizit benötigt.



Fragebogen

1

Welche Aussagen sind anhand der Grafik über das LZI–System möglich?

$H(f)$  beschreibt ein akausales System.
$H(f)$  beschreibt ein kausales System.
$H(f)$  beschreibt einen Tiefpass.
$H(f)$  beschreibt einen Hochpass.

2

Wie groß ist der Gleichsignalübertragungsfaktor?

$H(f = 0) \ =\ $

3

Wie lautet die Sprungantwort  $σ(t)$? Welcher Wert tritt bei  $t = T/2$  auf?

$σ(t = \rm 1 \: ms) \ = \ $

4

Berechnen Sie die Impulsantwort  $h(t)$  des Systems. Welche Werte besitzt diese zu den Zeitpunkten  $t = T/2$  und  $t = T$?

$h(t = \rm 1 \: ms) \ =\ $

 $\text {1/s}$
$h(t = \rm 2 \: ms) \ =\ $

 $\text {1/s}$

5

Am Eingang liegt der Rechteckimpuls  $x_2(t)$  an. Welches Ausgangssignal  $y_2(t)$  ergibt sich zu den Zeiten  $t_1 = -1 \text { ms}$,  $t_2 = 0$ ,  $t_3 = +1 \text { ms}$  und  $t_4 = +2 \text { ms}$?

$y_2(t = t_1) \ =\ $

 $\text {V}$
$y_2(t = t_2) \ =\ $

 $\text {V}$
$y_2(t = t_3) \ =\ $

 $\text {V}$
$y_2(t = t_4) \ =\ $

 $\text {V}$


Musterlösung

(1)  Richtig sind die Lösungsvorschläge 2 und 3:

  • Für das Ausgangssignal gilt $y_1(t)=0$, solange das Eingangssignal $x_1(t) = 0$. Das bedeutet, dass hier ein kausales System vorliegt.
  • Zum gleichen Ergebnis hätte man allein durch die Aussage „das Ausgangssignal wurde gemessen” kommen können. Nur kausale Systeme sind realisierbar und nur bei realisierbaren Systemen kann etwas gemessen werden.
  • Das Eingangssignal $x_1(t)$ kann für sehr große Zeiten $(t \gg 0)$ als Gleichsignal interpretiert werden. Wäre $H(f)$ ein Hochpass, dann müsste $y_1(t)$ für $t → ∞$ gegen Null gehen. Das heißt:   $H(f)$ stellt einen Tiefpass dar.


(2)  Der Gleichsignalübertragungsfaktor kann aus $x_1(t)$ und $y_1(t)$ abgelesen werden, wenn der Einschwingvorgang abgeklungen ist:

$$H(f =0) = \frac{y_1(t \rightarrow \infty)}{x_1(t \rightarrow \infty)}= \frac{ {\rm 1\, V} }{ {\rm 4\, V} } \hspace{0.15cm}\underline{= 0.25}.$$

(3)  Die Sprungantwort $σ(t)$ ist gleich dem Ausgangssignal $y(t)$, wenn am Eingang $x(t) = γ(t)$ anliegen würde.

  • Wegen $x_1(t) = 4 \hspace{0.05cm} \rm {V} · γ(t)$ gilt somit im Bereich von $0$ bis $T = 2 \ \rm ms$:
$$\sigma(t) = \frac{y_1(t)}{ {\rm 4\, V} } = 0.5 \cdot\big( {t}/{T} - 0.5 ({t}/{T})^2\big).$$
  • Zum Zeitpunkt $t = T = 2 \ \rm ms$ erreicht die Sprungantwort ihren Endwert $0.25$.
  • Für $t = T/2 = 1 \ \rm ms$ ergibt sich der Zahlenwert $3/16 \; \underline{\: = \: 0.1875}$.
  • Beachten Sie bitte, dass die Sprungantwort $σ(t)$ ebenso wie die Sprungfunktion $γ(t)$ keine Einheit besitzt.


rechts

(4)  Die Sprungantwort $σ(t)$ ist das Integral über die Impulsantwort $h(t)$. Damit ergibt sich $h(t)$ aus $σ(t)$ durch Differentiation nach der Zeit. Im Bereich $0 < t < T$ gilt deshalb:

$$h(t) = \frac{{\rm d}\hspace{0.1cm}\sigma(t)}{{\rm d}t}= 0.5 \cdot\left( \frac{1}{T} - 0.5 (\frac{2t}{T^2})\right) = \frac{0.5}{T} \cdot (1- \frac{t}{T})$$
$$\Rightarrow \hspace{0.2cm} h(t = {\rm 1\, ms}) = h(t = T/2) = \frac{0.25}{T} \hspace{0.15cm}\underline{= 125 \cdot{1}/{ {\rm s} } },$$
$$\Rightarrow \hspace{0.2cm} h(t = {\rm 2\, ms}) = h(t = T) \hspace{0.15cm}\underline{= 0}.$$

Für $t < 0$ und $t ≥ T$ ist stets $h(t)=0$. Der Wert $h(t = 0)$ bei exakt $t = 0$ muss aus dem Mittelwert zwischen links- und rechtsseitigem Grenzwert ermittelt werden:

$$h(t=0) = {1}/{2} \cdot \left[ \lim_{\varepsilon \hspace{0.03cm} \to \hspace{0.03cm}0} h(- \varepsilon)+ \lim_{\varepsilon \hspace{0.03cm} \to \hspace{0.03cm} 0} h(+ \varepsilon)\right] = \left[ 0 + {0.5}/{T}\right] = {0.25}/{T}= 250 \cdot{1}/{ {\rm s} }.$$


rechts

(5)  Der Rechteckimpuls $x_2(t)$ kann auch als die Differenz zweier um $±T/2$ verschobener Sprünge dargestellt werden:

$$x_2(t) = A \cdot \big[\gamma(t + {T}/{2}) - \gamma(t - {T}/{2})\big].$$

Damit ist das Ausgangssignal gleich der Differenz zweier um $±T/2$ verschobener Sprungantworten:

$$y_2(t) = A \cdot \big[\sigma(t + {T}/{2}) - \sigma(t - {T}/{2})\big].$$

Für $t = \: -T/2 = -1\ \rm ms$ gilt $y_2(t) \;\underline{ = 0}$.

Für die weiteren betrachteten Zeitpunkte erhält man wie in der Grafik angegeben:

$$y_2(t = 0) = A \cdot \big[\sigma(0.5 \cdot T) - \sigma(-0.5 \cdot T)\big] = {\rm 2\, V}\cdot \left[0.1875 - 0\right] \hspace{0.15cm}\underline{= {\rm 0.375\, V}},$$
$$y_2(t = T/2) = y_2(t = 1\,{\rm ms}) =A \cdot \big[\sigma( T) - \sigma(0)\big] = {\rm 2\, V}\cdot \left[0.25 - 0\right] \hspace{0.15cm}\underline{= {\rm 0.5\, V}},$$
$$y_2(t = T) = A \cdot \big[\sigma(1.5 \cdot T) - \sigma(0.5 \cdot T)\big] = {\rm 2\, V}\cdot \big[0.25 - 0.1875\big] \hspace{0.15cm}\underline{= {\rm 0.125\, V}}.$$