Difference between revisions of "Aufgaben:Exercise 1.4: 2S/3E Channel Model"

From LNTwww
Line 3: Line 3:
 
}}
 
}}
  
[[File:P_ID83__Sto_A_1_4.png|right|frame|2S/3E-Kanalmodell]]
+
[[File:P_ID83__Sto_A_1_4.png|right|frame|$\rm 2S/3E$-Kanalmodell]]
Ein Sender gibt die binären Symbole $\rm L$ (Ereignis $S_{\rm L}$) und $\rm H$ (Ereignis $S_{\rm H}$) ab.  
+
Ein Sender gibt die binären Symbole  $\rm L$  $($Ereignis  $S_{\rm L})$  und  $\rm H$  $($Ereignis  $S_{\rm H})$  ab.  
*Bei guten Bedingungen entscheidet sich der Digitalempfänger ebenfalls nur für die Binärsymbole $\rm L$ (Ereignis $E_{\rm L}$) oder $\rm H$ (Ereignis $E_{\rm H}$) .  
+
*Bei guten Bedingungen entscheidet sich der Digitalempfänger ebenfalls nur für die Binärsymbole  $\rm L$  $($Ereignis  $E_{\rm L})$  oder  $\rm H$  $($Ereignis  $E_{\rm H})$.  
*Kann der Empfänger allerdings vermuten, dass bei der Übertragung ein Fehler aufgetreten ist, so trifft er keine Entscheidung (Ereignis $E_{\rm K}$; $\rm K$ steht dabei für „Keine Entscheidung”).
+
*Kann der Empfänger allerdings vermuten, dass bei der Übertragung ein Fehler aufgetreten ist, so trifft er keine Entscheidung  $($Ereignis  $E_{\rm K})$;  $\rm K$  steht hierbei für „Keine Entscheidung”).
 +
 
 +
 
 +
Die Grafik zeigt ein einfaches Kanalmodell in Form von Übergangswahrscheinlichkeiten.  Es ist zu erkennen, dass ein gesendetes  $\rm L$  durchaus als Symbol  $\rm H$  empfangen werden kann.  Dagegen ist der Übergang von  $\rm H$  nach  $\rm L$  nicht möglich.
 +
 
 +
Die Symbolauftrittswahrscheinlichkeiten am Sender seien  ${\rm Pr}(S_{\rm L}) = 0.3$  und  ${\rm Pr}(S_{\rm H}) = 0.7$.
  
  
Die Grafik zeigt ein einfaches Kanalmodell in Form von Übergangswahrscheinlichkeiten. Es ist zu erkennen, dass ein gesendetes $\rm L$ durchaus als Symbol $\rm H$ empfangen werden kann. Dagegen ist der Übergang von $\rm H$ nach $\rm L$ nicht möglich.
 
  
Die Symbolauftrittswahrscheinlichkeiten am Sender seien ${\rm Pr}(S_{\rm L}) = 0.3$ und ${\rm Pr}(S_{\rm H}) = 0.7$.
 
  
  
Line 17: Line 20:
  
 
''Hinweise:''  
 
''Hinweise:''  
*Die Aufgabe gehört zum  Kapitel [[Stochastische_Signaltheorie/Statistische_Abhängigkeit_und_Unabhängigkeit|Statistische Abhängigkeit und Unabhängigkeit]].
+
*Die Aufgabe gehört zum  Kapitel  [[Stochastische_Signaltheorie/Statistische_Abhängigkeit_und_Unabhängigkeit|Statistische Abhängigkeit und Unabhängigkeit]].
 
   
 
   
*Eine Zusammenfassung der theoretischen Grundlagen mit Beispielen bringt das Lernvideo [[Statistische_Abhängigkeit_und_Unabhängigkeit_(Lernvideo)|Statistische Abhängigkeit und Unabhängigkeit]].
+
*Eine Zusammenfassung der theoretischen Grundlagen mit Beispielen bringt das Lernvideo  [[Statistische_Abhängigkeit_und_Unabhängigkeit_(Lernvideo)|Statistische Abhängigkeit und Unabhängigkeit]].
  
  
Line 25: Line 28:
  
 
<quiz display=simple>
 
<quiz display=simple>
{Wie groß ist die Wahrscheinlichkeit dafür, dass sich der Empfänger für das Symbol $\rm L$ entscheidet?
+
{Wie groß ist die Wahrscheinlichkeit dafür, dass sich der Empfänger für das Symbol&nbsp; $\rm L$&nbsp; entscheidet?
 
|type="{}"}
 
|type="{}"}
 
${\rm Pr}(E_{\rm L}) \ = \ $  { 0.21 3% }
 
${\rm Pr}(E_{\rm L}) \ = \ $  { 0.21 3% }
  
  
{Wie groß ist die Wahrscheinlichkeit dafür, dass sich der Empfänger für das Symbol $\rm H$ entscheidet?
+
{Wie groß ist die Wahrscheinlichkeit dafür, dass sich der Empfänger für das Symbol&nbsp; $\rm H$&nbsp; entscheidet?
 
|type="{}"}
 
|type="{}"}
 
${\rm Pr}(E_{\rm H}) \ = \ $ { 0.66 3% }
 
${\rm Pr}(E_{\rm H}) \ = \ $ { 0.66 3% }
Line 45: Line 48:
  
  
{Wie groß ist die Wahrscheinlichkeit, dass das Symbol $\rm L$ gesendet wurde, wenn sich der Empfänger für das Symbol $\rm L$ entschieden hat?
+
{Wie groß ist die Wahrscheinlichkeit, dass tatsächlich  das Symbol&nbsp; $\rm L$&nbsp; gesendet wurde, wenn sich der Empfänger für das Symbol&nbsp; $\rm L$&nbsp; entschieden hat?
 
|type="{}"}
 
|type="{}"}
 
${\rm Pr}(S_{\rm L}\hspace{0.05cm}|\hspace{0.05cm}E_{\rm L} ) \ = \ $  { 1 3% }
 
${\rm Pr}(S_{\rm L}\hspace{0.05cm}|\hspace{0.05cm}E_{\rm L} ) \ = \ $  { 1 3% }
  
  
{Wie groß ist die Wahrscheinlichkeit, dass das Symbol $\rm L$ gesendet wurde, wenn der Empfänger keine Entscheidung trifft?
+
{Wie groß ist die Wahrscheinlichkeit, dass das Symbol&nbsp; $\rm L$&nbsp; gesendet wurde, wenn der Empfänger keine Entscheidung trifft?
 
|type="{}"}
 
|type="{}"}
 
${\rm Pr}(S_{\rm L}\hspace{0.05cm}|\hspace{0.05cm}E_{\rm K} ) \ =\ $ { 0.4614 3% }
 
${\rm Pr}(S_{\rm L}\hspace{0.05cm}|\hspace{0.05cm}E_{\rm K} ) \ =\ $ { 0.4614 3% }

Revision as of 17:01, 9 November 2019

$\rm 2S/3E$-Kanalmodell

Ein Sender gibt die binären Symbole  $\rm L$  $($Ereignis  $S_{\rm L})$  und  $\rm H$  $($Ereignis  $S_{\rm H})$  ab.

  • Bei guten Bedingungen entscheidet sich der Digitalempfänger ebenfalls nur für die Binärsymbole  $\rm L$  $($Ereignis  $E_{\rm L})$  oder  $\rm H$  $($Ereignis  $E_{\rm H})$.
  • Kann der Empfänger allerdings vermuten, dass bei der Übertragung ein Fehler aufgetreten ist, so trifft er keine Entscheidung  $($Ereignis  $E_{\rm K})$;  $\rm K$  steht hierbei für „Keine Entscheidung”).


Die Grafik zeigt ein einfaches Kanalmodell in Form von Übergangswahrscheinlichkeiten.  Es ist zu erkennen, dass ein gesendetes  $\rm L$  durchaus als Symbol  $\rm H$  empfangen werden kann.  Dagegen ist der Übergang von  $\rm H$  nach  $\rm L$  nicht möglich.

Die Symbolauftrittswahrscheinlichkeiten am Sender seien  ${\rm Pr}(S_{\rm L}) = 0.3$  und  ${\rm Pr}(S_{\rm H}) = 0.7$.




Hinweise:


Fragebogen

1

Wie groß ist die Wahrscheinlichkeit dafür, dass sich der Empfänger für das Symbol  $\rm L$  entscheidet?

${\rm Pr}(E_{\rm L}) \ = \ $

2

Wie groß ist die Wahrscheinlichkeit dafür, dass sich der Empfänger für das Symbol  $\rm H$  entscheidet?

${\rm Pr}(E_{\rm H}) \ = \ $

3

Wie groß ist die Wahrscheinlichkeit dafür, dass der Empfänger keine Entscheidung trifft?

${\rm Pr}(E_{\rm K}) \ = \ $

4

Mit welcher Wahrscheinlichkeit entscheidet der Empfänger falsch?

$\text{Pr(falsche Entscheidung)} \ = \ $

5

Wie groß ist die Wahrscheinlichkeit, dass tatsächlich das Symbol  $\rm L$  gesendet wurde, wenn sich der Empfänger für das Symbol  $\rm L$  entschieden hat?

${\rm Pr}(S_{\rm L}\hspace{0.05cm}|\hspace{0.05cm}E_{\rm L} ) \ = \ $

6

Wie groß ist die Wahrscheinlichkeit, dass das Symbol  $\rm L$  gesendet wurde, wenn der Empfänger keine Entscheidung trifft?

${\rm Pr}(S_{\rm L}\hspace{0.05cm}|\hspace{0.05cm}E_{\rm K} ) \ =\ $


Musterlösung

(1)  Nur wenn das Symbol $\rm L$ gesendet wurde, kann sich der Empfänger beim gegebenen Kanal für das Symbol $\rm L$ entscheiden.

Die Wahrscheinlichkeit für ein empfangenes $\rm L$ ist allerdings um den Faktor $0.7$ kleiner als für ein gesendetes. Daraus folgt:

$${\rm Pr} (E_{\rm L}) = {\rm Pr}(S_{\rm L}) \cdot {\rm Pr} (E_{\rm L}\hspace{0.05cm}|\hspace{0.05cm}S_{\rm L}) = 0.3 \cdot 0.7 \hspace{0.15cm}\underline {= \rm 0.21}.$$


(2)  Zum Ereignis $E_{\rm H}$ kommt man sowohl von $S_{\rm H}$ als auch von $S_{\rm L}$ aus. Deshalb gilt:

$${\rm Pr} (E_{\rm H}) = {\rm Pr} (S_{\rm H}) \cdot {\rm Pr} (E_{\rm H}\hspace{0.05cm}|\hspace{0.05cm}S_{\rm H}) + {\rm Pr} (S_{\rm L}) \cdot {\rm Pr} (E_{\rm H}\hspace{0.05cm}|\hspace{0.05cm} S_{\rm L})= \rm 0.7 \cdot 0.9 + 0.3 \cdot 0.1\hspace{0.15cm}\underline { = \rm 0.66}.$$


(3)  Die Ereignisse $E_{\rm H}$, $E_{\rm L}$ und $E_{\rm K}$ bilden zusammen ein vollständiges System. Daraus folgt:

$${\rm Pr} (E_{\rm K}) = 1 - {\rm Pr} (E_{\rm L}) - {\rm Pr} (E_{\rm H}) \hspace{0.15cm}\underline {= \rm 0.13}.$$


(4)  Eine falsche Entscheidung kann man mengentheoretisch wie folgt charakterisieren:

$${\rm Pr} \text{(falsche Entscheidung)} = {\rm Pr} \big [(S_{\rm L} \cap E_{\rm H}) \cup (S_{\rm H} \cap E_{\rm L})\big ] = \rm 0.3 \cdot 0.1 + 0.7\cdot 0 \hspace{0.15cm}\underline {= \rm 0.03}.$$


(5)  Wenn das Symbol $\rm L$ empfangen wurde, kann nur $\rm L$ gesendet worden sein. Daraus folgt:

$${\rm Pr} (S_{\rm L} \hspace{0.05cm}|\hspace{0.05cm} E_{\rm L}) \hspace{0.15cm}\underline {= \rm 1}.$$


(6)  Zur Lösung dieser Aufgabe eignet sich zum Beispiel der Satz von Bayes:

$${\rm Pr} (S_{\rm L}\hspace{0.05cm}|\hspace{0.05cm} E_{\rm K}) =\frac{ {\rm Pr} ( E_{\rm K} \hspace{0.05cm}|\hspace{0.05cm} S_{\rm L}) \cdot {\rm Pr} (S_{\rm L})}{{\rm Pr} (E_{\rm K})} =\frac{ \rm 0.2 \cdot 0.3}{\rm 0.13} = \frac{\rm 6}{\rm 13}\hspace{0.15cm}\underline { \approx \rm 0.462}.$$