Difference between revisions of "Aufgaben:Exercise 3.1: Probabilities when Rolling Dice"
Line 73: | Line 73: | ||
:$$\underline{{\rm Pr}(R=B) = 6/36} = 0.1667 \hspace{0.05cm}.$$ | :$$\underline{{\rm Pr}(R=B) = 6/36} = 0.1667 \hspace{0.05cm}.$$ | ||
− | Letzteres basiert auf der 2D–Darstellung auf dem | + | Letzteres basiert auf der 2D–Darstellung auf dem Angabenblatt sowie auf der „Klassischen Definition der Wahrscheinlichkeit” entsprechend $K/M$: |
− | *$K = 6$ der insgesamt $M = 36$ gleichwahrscheinlichen Elementarereignisse $R \cap B$ können dem hieraus abgeleiteten Ereignis $R=B$ zugeordnet werden. | + | *$K = 6$ der insgesamt $M = 36$ gleichwahrscheinlichen Elementarereignisse $R \cap B$ können dem hieraus abgeleiteten Ereignis $R=B$ zugeordnet werden. |
− | *Diese liegen auf der Diagonalen. Würfelspieler sprechen in diesem Fall von einem „Pasch”. | + | *Diese liegen auf der Diagonalen. Würfelspieler sprechen in diesem Fall von einem „Pasch”. |
+ | |||
'''(2)''' Die Lösung basiert wieder auf der Klassischen Definition der Wahrscheinlichkeit: | '''(2)''' Die Lösung basiert wieder auf der Klassischen Definition der Wahrscheinlichkeit: | ||
− | * In $K = 2$ der $M = 36$ Elementarfelder steht eine „3” | + | * In $K = 2$ der $M = 36$ Elementarfelder steht eine „3” ⇒ ${\rm Pr}(S = 3) = 2/36\hspace{0.15cm}\underline{ = 0.0556}.$ |
− | * In $K = 6$ der $M = 36$ Elementarfelder steht eine „7” | + | * In $K = 6$ der $M = 36$ Elementarfelder steht eine „7” ⇒ ${\rm Pr}(S = 7) = 6/36\hspace{0.15cm}\underline{ = 0.1667}.$ |
− | * In $K = 18$ der $M = 36$ Felder steht eine ungerade Zahl ⇒ ${\rm Pr}(S\text{ ist ungerade}) = 18/36\hspace{0.15cm}\underline{ = 0.5}.$ | + | * In $K = 18$ der $M = 36$ Felder steht eine ungerade Zahl ⇒ ${\rm Pr}(S\text{ ist ungerade}) = 18/36\hspace{0.15cm}\underline{ = 0.5}.$ |
− | Dieses letzte Ergebnis könnte man auch auf anderem Wege erhalten: | + | *Dieses letzte Ergebnis könnte man auch auf anderem Wege erhalten: |
:$${\rm Pr}(S\hspace{0.15cm}{\rm ist \hspace{0.15cm} ungerade}) = | :$${\rm Pr}(S\hspace{0.15cm}{\rm ist \hspace{0.15cm} ungerade}) = | ||
{\rm Pr}\big [(R\hspace{0.12cm}{\rm ist\hspace{0.12cm} ungerade}) \cap | {\rm Pr}\big [(R\hspace{0.12cm}{\rm ist\hspace{0.12cm} ungerade}) \cap | ||
Line 90: | Line 91: | ||
{\rm Pr}\big [(R\hspace{0.12cm}{\rm ist\hspace{0.12cm} gerade}) \cap | {\rm Pr}\big [(R\hspace{0.12cm}{\rm ist\hspace{0.12cm} gerade}) \cap | ||
(B\hspace{0.12cm}{\rm ist\hspace{0.12cm} ungerade})\big ]\hspace{0.05cm}. $$ | (B\hspace{0.12cm}{\rm ist\hspace{0.12cm} ungerade})\big ]\hspace{0.05cm}. $$ | ||
− | Mit ${\rm Pr}(R\hspace{0.12cm}{\rm ist\hspace{0.12cm} gerade}) = {\rm Pr} (R\hspace{0.12cm}{\rm ist\hspace{0.12cm} ungerade}) = {\rm Pr}(B\hspace{0.12cm}{\rm ist\hspace{0.12cm} gerade})= {\rm Pr}(B\hspace{0.12cm}{\rm ist\hspace{0.12cm} ungerade}) = 1/2$ folgt daraus ebenfalls: | + | *Mit ${\rm Pr}(R\hspace{0.12cm}{\rm ist\hspace{0.12cm} gerade}) = {\rm Pr} (R\hspace{0.12cm}{\rm ist\hspace{0.12cm} ungerade}) = {\rm Pr}(B\hspace{0.12cm}{\rm ist\hspace{0.12cm} gerade})= {\rm Pr}(B\hspace{0.12cm}{\rm ist\hspace{0.12cm} ungerade}) = 1/2$ folgt daraus ebenfalls: |
:$${\rm Pr}(S\hspace{0.15cm}{\rm ist \hspace{0.15cm} ungerade}) = 1/2 \cdot 1/2 + 1/2 \cdot 1/2 = 1/2 \hspace{0.05cm}.$$ | :$${\rm Pr}(S\hspace{0.15cm}{\rm ist \hspace{0.15cm} ungerade}) = 1/2 \cdot 1/2 + 1/2 \cdot 1/2 = 1/2 \hspace{0.05cm}.$$ | ||
+ | |||
Line 97: | Line 99: | ||
:$${\rm Pr}\big [(R= 6) \cup (B= 6) \big ] = K/M = 11/36 \hspace{0.15cm} \underline{= 0.3056} | :$${\rm Pr}\big [(R= 6) \cup (B= 6) \big ] = K/M = 11/36 \hspace{0.15cm} \underline{= 0.3056} | ||
\hspace{0.05cm}.$$ | \hspace{0.05cm}.$$ | ||
− | Die zweite Wahrscheinlichkeit steht allein für den „Sechser–Pasch”: | + | *Die zweite Wahrscheinlichkeit steht allein für den „Sechser–Pasch”: |
:$${\rm Pr}\big [(R= 6) \cap (B= 6) \big ] = K/M = 1/36 \hspace{0.15cm} \underline{= 0.0278} | :$${\rm Pr}\big [(R= 6) \cap (B= 6) \big ] = K/M = 1/36 \hspace{0.15cm} \underline{= 0.0278} | ||
\hspace{0.05cm}.$$ | \hspace{0.05cm}.$$ | ||
− | '''(4)''' Das Ergebnis für $L = 1$ wurde bereits in der Teilaufgabe '''(3)''' ermittelt: | + | |
+ | '''(4)''' Das Ergebnis für $L = 1$ wurde bereits in der Teilaufgabe '''(3)''' ermittelt: | ||
:$$p_1 = {\rm Pr}\big [(R= 6) \cup (B= 6) \big ] = {11}/{36} \hspace{0.15cm} \underline{= 0.3056} \hspace{0.05cm}.$$ | :$$p_1 = {\rm Pr}\big [(R= 6) \cup (B= 6) \big ] = {11}/{36} \hspace{0.15cm} \underline{= 0.3056} \hspace{0.05cm}.$$ | ||
− | *Die Wahrscheinlichkeit $p_2$ lässt sich mit $p_1$ wie folgt ausdrücken: | + | *Die Wahrscheinlichkeit $p_2$ lässt sich mit $p_1$ wie folgt ausdrücken: |
:$$p_2 = (1 - p_1) \cdot p_1 = \frac{25}{36} \cdot \frac{11}{36} \hspace{0.15cm} \underline{= 0.2122} \hspace{0.05cm}. $$ | :$$p_2 = (1 - p_1) \cdot p_1 = \frac{25}{36} \cdot \frac{11}{36} \hspace{0.15cm} \underline{= 0.2122} \hspace{0.05cm}. $$ | ||
− | :In Worten: Die Wahrscheinlichkeit, dass im zweiten Wurf erstmals eine „6” geworfen wird, ist gleich der Wahrscheinlichkeit, dass im ersten Wurf keine „6” geworfen wurde ⇒ Wahrscheinlichkeit $1-p_1$, aber im zweiten Wurf mindestens eine „6” dabei ist ⇒ Wahrscheinlichkeit $p_1$. | + | :In Worten: Die Wahrscheinlichkeit, dass im zweiten Wurf erstmals eine „6” geworfen wird, ist gleich der Wahrscheinlichkeit, dass im ersten Wurf keine „6” geworfen wurde ⇒ Wahrscheinlichkeit $1-p_1$, aber im zweiten Wurf mindestens eine „6” dabei ist ⇒ Wahrscheinlichkeit $p_1$. |
*Entsprechend gilt für die Wahrscheinlichkeit „erste 6 im dritten Wurf”: | *Entsprechend gilt für die Wahrscheinlichkeit „erste 6 im dritten Wurf”: | ||
Line 112: | Line 115: | ||
− | '''(5)''' Durch Erweiterung der Musterlösung zur Teilaufgabe '''(4)''' erhält man: | + | |
+ | '''(5)''' Durch Erweiterung der Musterlösung zur Teilaufgabe '''(4)''' erhält man: | ||
:$$\text{Pr(gerades L)}= p_2 \hspace{-0.05cm}+ \hspace{-0.05cm}p_4 \hspace{-0.05cm}+ \hspace{-0.05cm} p_6 \hspace{-0.05cm}+ \hspace{-0.05cm} \text{...} = | :$$\text{Pr(gerades L)}= p_2 \hspace{-0.05cm}+ \hspace{-0.05cm}p_4 \hspace{-0.05cm}+ \hspace{-0.05cm} p_6 \hspace{-0.05cm}+ \hspace{-0.05cm} \text{...} = | ||
(1 \hspace{-0.05cm}- \hspace{-0.05cm} p_1) \cdot p_1 \hspace{-0.05cm}+ \hspace{-0.05cm} (1 \hspace{-0.05cm}- \hspace{-0.05cm} p_1)^3 \cdot p_1 \hspace{-0.05cm}+ \hspace{-0.05cm}(1 \hspace{-0.05cm}- \hspace{-0.05cm} p_1)^5 \cdot p_1 \hspace{-0.05cm}+ \hspace{-0.05cm} \text{...} | (1 \hspace{-0.05cm}- \hspace{-0.05cm} p_1) \cdot p_1 \hspace{-0.05cm}+ \hspace{-0.05cm} (1 \hspace{-0.05cm}- \hspace{-0.05cm} p_1)^3 \cdot p_1 \hspace{-0.05cm}+ \hspace{-0.05cm}(1 \hspace{-0.05cm}- \hspace{-0.05cm} p_1)^5 \cdot p_1 \hspace{-0.05cm}+ \hspace{-0.05cm} \text{...} | ||
= (1 \hspace{-0.05cm}- \hspace{-0.05cm} p_1) \cdot p_1 \cdot \left [ 1 \hspace{-0.05cm}+ \hspace{-0.05cm} (1 \hspace{-0.05cm}- \hspace{-0.05cm} p_1)^2 \hspace{-0.05cm}+ \hspace{-0.05cm} (1 \hspace{-0.05cm}- \hspace{-0.05cm} p_1)^4 +\text{...}\hspace{0.05cm} \right ] | = (1 \hspace{-0.05cm}- \hspace{-0.05cm} p_1) \cdot p_1 \cdot \left [ 1 \hspace{-0.05cm}+ \hspace{-0.05cm} (1 \hspace{-0.05cm}- \hspace{-0.05cm} p_1)^2 \hspace{-0.05cm}+ \hspace{-0.05cm} (1 \hspace{-0.05cm}- \hspace{-0.05cm} p_1)^4 +\text{...}\hspace{0.05cm} \right ] | ||
\hspace{0.05cm}. $$ | \hspace{0.05cm}. $$ | ||
− | Entsprechend erhält man für die Wahrscheinlichkeit des Komplementärereignisses: | + | *Entsprechend erhält man für die Wahrscheinlichkeit des Komplementärereignisses: |
:$${\rm Pr}(L\hspace{0.15cm}{\rm ist\hspace{0.15cm} ungeradzahlig}) | :$${\rm Pr}(L\hspace{0.15cm}{\rm ist\hspace{0.15cm} ungeradzahlig}) | ||
= p_1 + p_3 + p_5 + \text{...} = p_1 \cdot \left [ 1 + (1 - p_1)^2 + (1 - p_1)^4 + \text{...} \hspace{0.15cm} \right ] | = p_1 + p_3 + p_5 + \text{...} = p_1 \cdot \left [ 1 + (1 - p_1)^2 + (1 - p_1)^4 + \text{...} \hspace{0.15cm} \right ] | ||
\hspace{0.05cm}\hspace{0.3cm} | \hspace{0.05cm}\hspace{0.3cm} | ||
\Rightarrow \hspace{0.3cm} \frac{{\rm Pr}(L\hspace{0.15cm}{\rm ist\hspace{0.15cm} ungeradzahlig}) } {{\rm Pr}(L\hspace{0.15cm}{\rm ist\hspace{0.15cm} geradzahlig})} = \frac{1}{1 - p_1} \hspace{0.05cm}. $$ | \Rightarrow \hspace{0.3cm} \frac{{\rm Pr}(L\hspace{0.15cm}{\rm ist\hspace{0.15cm} ungeradzahlig}) } {{\rm Pr}(L\hspace{0.15cm}{\rm ist\hspace{0.15cm} geradzahlig})} = \frac{1}{1 - p_1} \hspace{0.05cm}. $$ | ||
− | Weiter muss gelten: | + | *Weiter muss gelten: |
:$${\rm Pr}(L\hspace{0.15cm}{\rm ist\hspace{0.15cm} geradzahlig}) + | :$${\rm Pr}(L\hspace{0.15cm}{\rm ist\hspace{0.15cm} geradzahlig}) + | ||
{\rm Pr}(L\hspace{0.15cm}{\rm ist\hspace{0.15cm} ungeradzahlig}) = 1$$ | {\rm Pr}(L\hspace{0.15cm}{\rm ist\hspace{0.15cm} ungeradzahlig}) = 1$$ |
Revision as of 12:39, 30 January 2020
Wir betrachten das Zufallsexperiment „Würfeln mit ein oder zwei Würfeln”. Beide Würfel sind fair (die sechs möglichen Ergebnisse sind gleichwahrscheinlich) und durch ihre Farben unterscheidbar:
- Die Zufallsgröße $R = \{1, \ 2,\ 3,\ 4,\ 5,\ 6 \}$ bezeichnet die Augenzahl des roten Würfels.
- Die Zufallsgröße $B = \{1,\ 2,\ 3,\ 4,\ 5,\ 6 \}$ bezeichnet die Augenzahl des blauen Würfels.
- Die Zufallsgröße $S =R + B$ steht für die Summe beider Würfel.
In dieser Aufgabe sollen verschiedene Wahrscheinlichkeiten mit Bezug zu den Zufallsgrößen $R$, $B$ und $S$ berechnet werden, wobei das oben angegebene Schema hilfreich sein kann. Dieses beinhaltet die Summe $S$ in Abhängigkeit von $R$ und $B$.
Hinweise:
- Die Aufgabe gehört zum Kapitel Einige Vorbemerkungen zu den 2D-Zufallsgrößen.
- Wiederholt wird hier insbesondere der Lehrstoff des Kapitels Wahrscheinlichkeitsrechnung im Buch „Stochastische Signaltheorie”.
Fragebogen
Musterlösung
- mit dem roten Würfel eine „6” geworfen wird:
- $$\underline{{\rm Pr}(R=6) = 1/6} = 0.1667 \hspace{0.05cm},$$
- mit dem blauen Würfel eine „1” oder eine „2” geworfen wird:
- $$\underline{{\rm Pr}(B\le 2) = 1/3} = 0.3333 \hspace{0.05cm},$$
- beide Würfel die gleiche Augenzahl anzeigen:
- $$\underline{{\rm Pr}(R=B) = 6/36} = 0.1667 \hspace{0.05cm}.$$
Letzteres basiert auf der 2D–Darstellung auf dem Angabenblatt sowie auf der „Klassischen Definition der Wahrscheinlichkeit” entsprechend $K/M$:
- $K = 6$ der insgesamt $M = 36$ gleichwahrscheinlichen Elementarereignisse $R \cap B$ können dem hieraus abgeleiteten Ereignis $R=B$ zugeordnet werden.
- Diese liegen auf der Diagonalen. Würfelspieler sprechen in diesem Fall von einem „Pasch”.
(2) Die Lösung basiert wieder auf der Klassischen Definition der Wahrscheinlichkeit:
- In $K = 2$ der $M = 36$ Elementarfelder steht eine „3” ⇒ ${\rm Pr}(S = 3) = 2/36\hspace{0.15cm}\underline{ = 0.0556}.$
- In $K = 6$ der $M = 36$ Elementarfelder steht eine „7” ⇒ ${\rm Pr}(S = 7) = 6/36\hspace{0.15cm}\underline{ = 0.1667}.$
- In $K = 18$ der $M = 36$ Felder steht eine ungerade Zahl ⇒ ${\rm Pr}(S\text{ ist ungerade}) = 18/36\hspace{0.15cm}\underline{ = 0.5}.$
- Dieses letzte Ergebnis könnte man auch auf anderem Wege erhalten:
- $${\rm Pr}(S\hspace{0.15cm}{\rm ist \hspace{0.15cm} ungerade}) = {\rm Pr}\big [(R\hspace{0.12cm}{\rm ist\hspace{0.12cm} ungerade}) \cap (B\hspace{0.12cm}{\rm ist\hspace{0.12cm} gerade}) \big ] + {\rm Pr}\big [(R\hspace{0.12cm}{\rm ist\hspace{0.12cm} gerade}) \cap (B\hspace{0.12cm}{\rm ist\hspace{0.12cm} ungerade})\big ]\hspace{0.05cm}. $$
- Mit ${\rm Pr}(R\hspace{0.12cm}{\rm ist\hspace{0.12cm} gerade}) = {\rm Pr} (R\hspace{0.12cm}{\rm ist\hspace{0.12cm} ungerade}) = {\rm Pr}(B\hspace{0.12cm}{\rm ist\hspace{0.12cm} gerade})= {\rm Pr}(B\hspace{0.12cm}{\rm ist\hspace{0.12cm} ungerade}) = 1/2$ folgt daraus ebenfalls:
- $${\rm Pr}(S\hspace{0.15cm}{\rm ist \hspace{0.15cm} ungerade}) = 1/2 \cdot 1/2 + 1/2 \cdot 1/2 = 1/2 \hspace{0.05cm}.$$
(3) Die Wahrscheinlichkeit für das Ereignis, dass mindestens einer der beiden Würfel eine „6” zeigt, ist:
- $${\rm Pr}\big [(R= 6) \cup (B= 6) \big ] = K/M = 11/36 \hspace{0.15cm} \underline{= 0.3056} \hspace{0.05cm}.$$
- Die zweite Wahrscheinlichkeit steht allein für den „Sechser–Pasch”:
- $${\rm Pr}\big [(R= 6) \cap (B= 6) \big ] = K/M = 1/36 \hspace{0.15cm} \underline{= 0.0278} \hspace{0.05cm}.$$
(4) Das Ergebnis für $L = 1$ wurde bereits in der Teilaufgabe (3) ermittelt:
- $$p_1 = {\rm Pr}\big [(R= 6) \cup (B= 6) \big ] = {11}/{36} \hspace{0.15cm} \underline{= 0.3056} \hspace{0.05cm}.$$
- Die Wahrscheinlichkeit $p_2$ lässt sich mit $p_1$ wie folgt ausdrücken:
- $$p_2 = (1 - p_1) \cdot p_1 = \frac{25}{36} \cdot \frac{11}{36} \hspace{0.15cm} \underline{= 0.2122} \hspace{0.05cm}. $$
- In Worten: Die Wahrscheinlichkeit, dass im zweiten Wurf erstmals eine „6” geworfen wird, ist gleich der Wahrscheinlichkeit, dass im ersten Wurf keine „6” geworfen wurde ⇒ Wahrscheinlichkeit $1-p_1$, aber im zweiten Wurf mindestens eine „6” dabei ist ⇒ Wahrscheinlichkeit $p_1$.
- Entsprechend gilt für die Wahrscheinlichkeit „erste 6 im dritten Wurf”:
- $$p_3 = (1 - p_1)^2 \cdot p_1 = \frac{25}{36} \cdot \frac{25}{36} \cdot\frac{11}{36} \hspace{0.15cm} \underline{= 0.1474} \hspace{0.05cm}.$$
(5) Durch Erweiterung der Musterlösung zur Teilaufgabe (4) erhält man:
- $$\text{Pr(gerades L)}= p_2 \hspace{-0.05cm}+ \hspace{-0.05cm}p_4 \hspace{-0.05cm}+ \hspace{-0.05cm} p_6 \hspace{-0.05cm}+ \hspace{-0.05cm} \text{...} = (1 \hspace{-0.05cm}- \hspace{-0.05cm} p_1) \cdot p_1 \hspace{-0.05cm}+ \hspace{-0.05cm} (1 \hspace{-0.05cm}- \hspace{-0.05cm} p_1)^3 \cdot p_1 \hspace{-0.05cm}+ \hspace{-0.05cm}(1 \hspace{-0.05cm}- \hspace{-0.05cm} p_1)^5 \cdot p_1 \hspace{-0.05cm}+ \hspace{-0.05cm} \text{...} = (1 \hspace{-0.05cm}- \hspace{-0.05cm} p_1) \cdot p_1 \cdot \left [ 1 \hspace{-0.05cm}+ \hspace{-0.05cm} (1 \hspace{-0.05cm}- \hspace{-0.05cm} p_1)^2 \hspace{-0.05cm}+ \hspace{-0.05cm} (1 \hspace{-0.05cm}- \hspace{-0.05cm} p_1)^4 +\text{...}\hspace{0.05cm} \right ] \hspace{0.05cm}. $$
- Entsprechend erhält man für die Wahrscheinlichkeit des Komplementärereignisses:
- $${\rm Pr}(L\hspace{0.15cm}{\rm ist\hspace{0.15cm} ungeradzahlig}) = p_1 + p_3 + p_5 + \text{...} = p_1 \cdot \left [ 1 + (1 - p_1)^2 + (1 - p_1)^4 + \text{...} \hspace{0.15cm} \right ] \hspace{0.05cm}\hspace{0.3cm} \Rightarrow \hspace{0.3cm} \frac{{\rm Pr}(L\hspace{0.15cm}{\rm ist\hspace{0.15cm} ungeradzahlig}) } {{\rm Pr}(L\hspace{0.15cm}{\rm ist\hspace{0.15cm} geradzahlig})} = \frac{1}{1 - p_1} \hspace{0.05cm}. $$
- Weiter muss gelten:
- $${\rm Pr}(L\hspace{0.15cm}{\rm ist\hspace{0.15cm} geradzahlig}) + {\rm Pr}(L\hspace{0.15cm}{\rm ist\hspace{0.15cm} ungeradzahlig}) = 1$$
- $$\Rightarrow \hspace{0.3cm} {\rm Pr}(L\hspace{0.15cm}{\rm ist\hspace{0.15cm} geradzahlig}) \cdot \left [ 1 + \frac{1}{1 - p_1} \right ] = 1 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} {\rm Pr}(L\hspace{0.15cm}{\rm ist\hspace{0.15cm} geradzahlig}) = \frac{1 - p_1}{2 - p_1} = \frac{25/36}{61/36} = \frac{25}{61} \hspace{0.15cm} \underline{= 0.4098} \hspace{0.05cm}.$$