Difference between revisions of "Aufgaben:Exercise 3.8Z: Tuples from Ternary Random Variables"
From LNTwww
Line 54: | Line 54: | ||
===Musterlösung=== | ===Musterlösung=== | ||
{{ML-Kopf}} | {{ML-Kopf}} | ||
− | '''(1)''' Bei den Zufallsgrößen $X =\{0, 1, 2\}$ ⇒ $|X| = 3$ und $Y = \{0, 1, 2\}$ ⇒ $|Y| = 3$ liegt jeweils eine Gleichverteilung vor. Damit erhält man für die Entropien: | + | '''(1)''' Bei den Zufallsgrößen $X =\{0,\ 1,\ 2\}$ ⇒ $|X| = 3$ und $Y = \{0,\ 1,\ 2\}$ ⇒ $|Y| = 3$ liegt jeweils eine Gleichverteilung vor. |
+ | *Damit erhält man für die Entropien: | ||
:$$H(X) = {\rm log}_2 \hspace{0.1cm} (3) | :$$H(X) = {\rm log}_2 \hspace{0.1cm} (3) | ||
Line 61: | Line 62: | ||
\hspace{0.15cm}\underline{= 1.585\,{\rm (bit)}}\hspace{0.05cm}.$$ | \hspace{0.15cm}\underline{= 1.585\,{\rm (bit)}}\hspace{0.05cm}.$$ | ||
− | Die 2D–Zufallsgröße $XY = \{00, 01, 02, 10, 11, 12, 20, 21, 22\}$ ⇒ $|XY| = |Z| = 9$ weist ebenfalls gleiche Wahrscheinlichkeiten auf: | + | *Die 2D–Zufallsgröße $XY = \{00,\ 01,\ 02,\ 10,\ 11,\ 12,\ 20,\ 21,\ 22\}$ ⇒ $|XY| = |Z| = 9$ weist ebenfalls gleiche Wahrscheinlichkeiten auf: |
:$$p_{ 00 } = p_{ 01 } =\text{...} = p_{ 22 } = 1/9.$$ | :$$p_{ 00 } = p_{ 01 } =\text{...} = p_{ 22 } = 1/9.$$ | ||
− | Daraus folgt: | + | *Daraus folgt: |
:$$H(XY) = {\rm log}_2 \hspace{0.1cm} (9) \hspace{0.15cm}\underline{= 3.170\,{\rm (bit)}} \hspace{0.05cm}.$$ | :$$H(XY) = {\rm log}_2 \hspace{0.1cm} (9) \hspace{0.15cm}\underline{= 3.170\,{\rm (bit)}} \hspace{0.05cm}.$$ | ||
− | |||
− | |||
− | |||
+ | '''(2)''' Die Zufallsgrößen $X$ und $Y$ sind wegen $P_{ XY }(⋅) = P_X(⋅) · P_Y(⋅)$ statistisch unabhängig. | ||
+ | *Daraus folgt $I(X, Y)\hspace{0.15cm}\underline{ = 0}$. | ||
+ | *Zum gleichen Ergebnis kommt man über die Gleichung $I(X; Y) = H(X) + H(Y) – H(XY)$. | ||
− | '''(3)''' Interpretiert man $I(X; Z)$ als die verbleibende Unsicherheit hinsichtlich des Tupels $Z$, wenn die erste Komponente $X$ bekannt ist, so gilt offensichtlich | + | |
+ | |||
+ | |||
+ | '''(3)''' Interpretiert man $I(X; Z)$ als die verbleibende Unsicherheit hinsichtlich des Tupels $Z$, wenn die erste Komponente $X$ bekannt ist, so gilt offensichtlich | ||
+ | [[File:P_ID2774__Inf_Z_3_7c.png|right|frame|Wahrscheinlichkeitsfunktion der 2D-Zufallsgröße $XZ$]] | ||
:$$ I(X; Z) = H(Y)\hspace{0.15cm}\underline{ = 1.585 \ \rm bit}.$$ | :$$ I(X; Z) = H(Y)\hspace{0.15cm}\underline{ = 1.585 \ \rm bit}.$$ | ||
− | |||
Rein formal lässt sich diese Aufgabe auch wie folgt lösen: | Rein formal lässt sich diese Aufgabe auch wie folgt lösen: | ||
− | * Die Entropie $H(Z)$ ist gleich der Verbundentropie $H(XY) = 3.170 \ \rm bit$. | + | * Die Entropie $H(Z)$ ist gleich der Verbundentropie $H(XY) = 3.170 \ \rm bit$. |
− | * Die Verbundwahrscheinlichkeit $P_{ XZ }(X, Z)$ beinhaltet neun Elemente der Wahrscheinlichkeit $1/9$, alle anderen sind mit Nullen belegt ⇒ $H(XZ) = \log_2 (9) = 3.170 \ \rm bit $. | + | * Die Verbundwahrscheinlichkeit $P_{ XZ }(X, Z)$ beinhaltet neun Elemente der Wahrscheinlichkeit $1/9$, alle anderen sind mit Nullen belegt ⇒ $H(XZ) = \log_2 (9) = 3.170 \ \rm bit $. |
− | * Damit gilt für die Transinformation (gemeinsame Information der Zufallsgrößen $X$ und $Z$ | + | * Damit gilt für die Transinformation $($gemeinsame Information der Zufallsgrößen $X$ und $Z)$: |
:$$I(X;Z) = H(X) + H(Z) - H(XZ) = 1.585 + 3.170- 3.170\hspace{0.15cm} \underline {= 1.585\,{\rm (bit)}} \hspace{0.05cm}.$$ | :$$I(X;Z) = H(X) + H(Z) - H(XZ) = 1.585 + 3.170- 3.170\hspace{0.15cm} \underline {= 1.585\,{\rm (bit)}} \hspace{0.05cm}.$$ | ||
− | [[File:P_ID2773__Inf_Z_3_7d.png|right|frame|Entropien der 2D-Zufallsgröße $XZ$]] | + | [[File:P_ID2773__Inf_Z_3_7d.png|right|frame|Entropien der 2D-Zufallsgröße $XZ$]] |
'''(4)''' Entsprechend der zweiten Grafik gilt: | '''(4)''' Entsprechend der zweiten Grafik gilt: | ||
− | :$$H(Z \hspace{-0.1cm}\mid \hspace{-0.1cm} X) = H(XZ) - H(X) = 3.170-1.585\hspace{0.15cm} \underline {=1.585\ | + | :$$H(Z \hspace{-0.1cm}\mid \hspace{-0.1cm} X) = H(XZ) - H(X) = 3.170-1.585\hspace{0.15cm} \underline {=1.585\ {\rm (bit)}} \hspace{0.05cm},$$ |
− | :$$H(X \hspace{-0.1cm}\mid \hspace{-0.1cm} Z) = H(XZ) - H(Z) = 3.170-3.170\hspace{0.15cm} \underline {=0\ | + | :$$H(X \hspace{-0.1cm}\mid \hspace{-0.1cm} Z) = H(XZ) - H(Z) = 3.170-3.170\hspace{0.15cm} \underline {=0\ {\rm (bit)}} \hspace{0.05cm}.$$ |
− | * $H(Z|X)$ gibt die Restunsicherheit hinsichtlich des Tupels $Z$ an, wenn man die erste Komponente $X$ kennt. | + | * $H(Z|X)$ gibt die Restunsicherheit hinsichtlich des Tupels $Z$ an, wenn man die erste Komponente $X$ kennt. |
− | *Die Unsicherheit hinsichtlich des Tupels $Z$ ist $H(Z) = 2 · \log_2 (3) \ \rm bit$ | + | *Die Unsicherheit hinsichtlich des Tupels $Z$ ist $H(Z) = 2 · \log_2 (3) \ \rm bit$. |
− | * $H(X|Z)$ gibt die verbleibende Unsicherheit hinsichtlich der Komponente $X$ an, wenn man das Tupel $Z = (X, Y)$ kennt. Diese Unsicherheit ist natürlich Null: Kennt man $Z$, so kennt man auch $X$. | + | * Bei Kenntnis der Komponente $X$ halbiert sich die Unsicherheit auf $H(Z|X) = \log_2 (3)\ \rm bit$. |
+ | * $H(X|Z)$ gibt die verbleibende Unsicherheit hinsichtlich der Komponente $X$ an, wenn man das Tupel $Z = (X, Y)$ kennt. | ||
+ | *Diese Unsicherheit ist natürlich Null: Kennt man $Z$, so kennt man auch $X$. | ||
{{ML-Fuß}} | {{ML-Fuß}} |
Revision as of 14:57, 31 January 2020
Wir betrachten das Tupel $Z = (X, Y)$, wobei die Einzelkomponenten $X$ und $Y$ jeweils ternäre Zufallsgrößen darstellen ⇒ Symbolumfang $|X| = |Y| = 3$. Die gemeinsame Wahrscheinlichkeitsfunktion $P_{ XY }(X, Y)$ ist rechts skizziert.
In dieser Aufgabe sind zu berechnen:
- die Verbundentropie $H(XY)$ und die Transinformation $I(X; Y)$,
- die Verbundentropie $H(XZ)$ und die Transinformation $I(X; Z)$,
- die beiden bedingten Entropien $H(Z|X)$ und $H(X|Z)$.
Hinweise:
- Die Aufgabe gehört zum Kapitel Verschiedene Entropien zweidimensionaler Zufallsgrößen.
- Insbesondere wird Bezug genommen auf die Seiten
Bedingte Wahrscheinlichkeit und bedingte Entropie sowie
Transinformation zwischen zwei Zufallsgrößen.
Fragebogen
Musterlösung
(1) Bei den Zufallsgrößen $X =\{0,\ 1,\ 2\}$ ⇒ $|X| = 3$ und $Y = \{0,\ 1,\ 2\}$ ⇒ $|Y| = 3$ liegt jeweils eine Gleichverteilung vor.
- Damit erhält man für die Entropien:
- $$H(X) = {\rm log}_2 \hspace{0.1cm} (3) \hspace{0.15cm}\underline{= 1.585\,{\rm (bit)}} \hspace{0.05cm},$$
- $$H(Y) = {\rm log}_2 \hspace{0.1cm} (3) \hspace{0.15cm}\underline{= 1.585\,{\rm (bit)}}\hspace{0.05cm}.$$
- Die 2D–Zufallsgröße $XY = \{00,\ 01,\ 02,\ 10,\ 11,\ 12,\ 20,\ 21,\ 22\}$ ⇒ $|XY| = |Z| = 9$ weist ebenfalls gleiche Wahrscheinlichkeiten auf:
- $$p_{ 00 } = p_{ 01 } =\text{...} = p_{ 22 } = 1/9.$$
- Daraus folgt:
- $$H(XY) = {\rm log}_2 \hspace{0.1cm} (9) \hspace{0.15cm}\underline{= 3.170\,{\rm (bit)}} \hspace{0.05cm}.$$
(2) Die Zufallsgrößen $X$ und $Y$ sind wegen $P_{ XY }(⋅) = P_X(⋅) · P_Y(⋅)$ statistisch unabhängig.
- Daraus folgt $I(X, Y)\hspace{0.15cm}\underline{ = 0}$.
- Zum gleichen Ergebnis kommt man über die Gleichung $I(X; Y) = H(X) + H(Y) – H(XY)$.
(3) Interpretiert man $I(X; Z)$ als die verbleibende Unsicherheit hinsichtlich des Tupels $Z$, wenn die erste Komponente $X$ bekannt ist, so gilt offensichtlich
- $$ I(X; Z) = H(Y)\hspace{0.15cm}\underline{ = 1.585 \ \rm bit}.$$
Rein formal lässt sich diese Aufgabe auch wie folgt lösen:
- Die Entropie $H(Z)$ ist gleich der Verbundentropie $H(XY) = 3.170 \ \rm bit$.
- Die Verbundwahrscheinlichkeit $P_{ XZ }(X, Z)$ beinhaltet neun Elemente der Wahrscheinlichkeit $1/9$, alle anderen sind mit Nullen belegt ⇒ $H(XZ) = \log_2 (9) = 3.170 \ \rm bit $.
- Damit gilt für die Transinformation $($gemeinsame Information der Zufallsgrößen $X$ und $Z)$:
- $$I(X;Z) = H(X) + H(Z) - H(XZ) = 1.585 + 3.170- 3.170\hspace{0.15cm} \underline {= 1.585\,{\rm (bit)}} \hspace{0.05cm}.$$
(4) Entsprechend der zweiten Grafik gilt:
- $$H(Z \hspace{-0.1cm}\mid \hspace{-0.1cm} X) = H(XZ) - H(X) = 3.170-1.585\hspace{0.15cm} \underline {=1.585\ {\rm (bit)}} \hspace{0.05cm},$$
- $$H(X \hspace{-0.1cm}\mid \hspace{-0.1cm} Z) = H(XZ) - H(Z) = 3.170-3.170\hspace{0.15cm} \underline {=0\ {\rm (bit)}} \hspace{0.05cm}.$$
- $H(Z|X)$ gibt die Restunsicherheit hinsichtlich des Tupels $Z$ an, wenn man die erste Komponente $X$ kennt.
- Die Unsicherheit hinsichtlich des Tupels $Z$ ist $H(Z) = 2 · \log_2 (3) \ \rm bit$.
- Bei Kenntnis der Komponente $X$ halbiert sich die Unsicherheit auf $H(Z|X) = \log_2 (3)\ \rm bit$.
- $H(X|Z)$ gibt die verbleibende Unsicherheit hinsichtlich der Komponente $X$ an, wenn man das Tupel $Z = (X, Y)$ kennt.
- Diese Unsicherheit ist natürlich Null: Kennt man $Z$, so kennt man auch $X$.