Difference between revisions of "Aufgaben:Exercise 4.9: Higher-Level Modulation"
Line 4: | Line 4: | ||
[[File:P_ID2952__Inf_A_4_9.png|right|frame|Einige Kanalkapazitätskurven]] | [[File:P_ID2952__Inf_A_4_9.png|right|frame|Einige Kanalkapazitätskurven]] | ||
− | Die Grafik zeigt AWGN–Kanalkapazitätskurven über der Abszisse $10 \cdot \lg (E_{\rm S}/{N_0})$: | + | Die Grafik zeigt AWGN–Kanalkapazitätskurven über der Abszisse $10 \cdot \lg (E_{\rm S}/{N_0})$: |
− | * $C_\text{Gauß}$: Shannonsche Grenzkurve, | + | * $C_\text{Gauß}$: Shannonsche Grenzkurve, |
− | * $C_\text{BPSK}$: gültig für ''Binary Phase Shift Keying''. | + | * $C_\text{BPSK}$: gültig für ''Binary Phase Shift Keying''. |
+ | |||
+ | |||
+ | Die beiden weiteren Kurvenverläufe $C_\text{rot}$ und $C_\text{braun}$ sollen in den Teilaufgaben '''(3)''' und '''(4)''' analysiert und möglichen Modulationsverfahren zugeordnet werden. | ||
+ | |||
+ | |||
− | |||
''Hinweise:'' | ''Hinweise:'' | ||
− | *Die Aufgabe gehört zum Kapitel | + | *Die Aufgabe gehört zum Kapitel [[Informationstheorie/AWGN–Kanalkapazität_bei_wertdiskretem_Eingang|AWGN–Kanalkapazität bei wertdiskretem Eingang]]. |
− | *Bezug genommen wird insbesondere auf die Seite | + | *Bezug genommen wird insbesondere auf die Seite [[Informationstheorie/AWGN–Kanalkapazität_bei_wertdiskretem_Eingang#Die_Kanalkapazit.C3.A4t_.7F.27.22.60UNIQ-MathJax130-QINU.60.22.27.7F_als_Funktion_von_.7F.27.22.60UNIQ-MathJax131-QINU.60.22.27.7F|Die Kanalkapazität $C$ als Funktion von $E_{\rm B}/{N_0}$]]. |
*Da die Ergebnisse in „bit” angegeben werden sollen, wird in den Gleichungen „log” ⇒ „log<sub>2</sub>” verwendet. | *Da die Ergebnisse in „bit” angegeben werden sollen, wird in den Gleichungen „log” ⇒ „log<sub>2</sub>” verwendet. | ||
*Die im Fragebogen genannten Modulationsverfahren werden anhand ihrer Signalraumkonstellation beschrieben: | *Die im Fragebogen genannten Modulationsverfahren werden anhand ihrer Signalraumkonstellation beschrieben: | ||
Line 24: | Line 28: | ||
''Anmerkungen zur Nomenklatur'': | ''Anmerkungen zur Nomenklatur'': | ||
− | *In der Literatur wird manchmal die BPSK auch mit 2–ASK bezeichnet | + | *In der Literatur wird manchmal die „BPSK” auch mit „2–ASK” bezeichnet |
:$$x ∈ X = \{+1, -1\}.$$ | :$$x ∈ X = \{+1, -1\}.$$ | ||
− | *Dagegen verstehen wir in unserem Lerntutorial $\rm LNTwww$ als ASK den unipolaren Fall | + | *Dagegen verstehen wir in unserem Lerntutorial $\rm LNTwww$ als „ASK” den unipolaren Fall |
:$$x ∈ X = \{0, 1 \}.$$ | :$$x ∈ X = \{0, 1 \}.$$ | ||
*Nach unserer Nomenklatur gilt deshalb: | *Nach unserer Nomenklatur gilt deshalb: |
Revision as of 10:03, 19 February 2020
Die Grafik zeigt AWGN–Kanalkapazitätskurven über der Abszisse $10 \cdot \lg (E_{\rm S}/{N_0})$:
- $C_\text{Gauß}$: Shannonsche Grenzkurve,
- $C_\text{BPSK}$: gültig für Binary Phase Shift Keying.
Die beiden weiteren Kurvenverläufe $C_\text{rot}$ und $C_\text{braun}$ sollen in den Teilaufgaben (3) und (4) analysiert und möglichen Modulationsverfahren zugeordnet werden.
Hinweise:
- Die Aufgabe gehört zum Kapitel AWGN–Kanalkapazität bei wertdiskretem Eingang.
- Bezug genommen wird insbesondere auf die Seite Die Kanalkapazität $C$ als Funktion von $E_{\rm B}/{N_0}$.
- Da die Ergebnisse in „bit” angegeben werden sollen, wird in den Gleichungen „log” ⇒ „log2” verwendet.
- Die im Fragebogen genannten Modulationsverfahren werden anhand ihrer Signalraumkonstellation beschrieben:
Anmerkungen zur Nomenklatur:
- In der Literatur wird manchmal die „BPSK” auch mit „2–ASK” bezeichnet
- $$x ∈ X = \{+1, -1\}.$$
- Dagegen verstehen wir in unserem Lerntutorial $\rm LNTwww$ als „ASK” den unipolaren Fall
- $$x ∈ X = \{0, 1 \}.$$
- Nach unserer Nomenklatur gilt deshalb:
- $$C_\text{AK} < C_\text{BPSK}$$
Dieser Sachverhalt hat aber keinen Einfluss auf die Lösung der vorliegenden Aufgabe.
Fragebogen
Musterlösung
- $$C_2(15\hspace{0.1cm}{\rm dB}) = {1}/{2} \cdot {\rm log}_2 \hspace{0.1cm} ( 1 + 2 \cdot 31.62 ) = {1}/{2} \cdot {\rm log}_2 \hspace{0.1cm} ( 64.25 ) \approx 3\,{\rm bit/Kanalzugriff}\hspace{0.05cm}. $$
Die beiden anderen Lösungsvorschläge liefern folgende Zahlenwerte:
- $$C_3(15\hspace{0.1cm}{\rm dB}) \ = \ {\rm log}_2 \hspace{0.1cm} ( 1 + 31.62 ) \approx 5.03\,{\rm bit/Kanalzugriff}\hspace{0.05cm},$$
- $$ C_1(15\hspace{0.1cm}{\rm dB}) \ = \ C_3/2 \approx 2.51\,{\rm bit/Kanalzugriff}\hspace{0.05cm}.$$
Der Lösungsvorschlag 3 entspricht dabei dem Fall Zweier unabhängiger Gaußkanäle mit jeweils halber Sendeleistung pro Kanal.
(2) Richtig sind die Lösungsvorschläge 1, 2 und 4:
- Würde man $E_{\rm S}$ durch $E_{\rm B}$ ersetzen, so wäre auch die Aussage 3 richtig.
- Für $E_{\rm B}/{N_0} < \ln (2)$ gilt nämlich $C_{\rm Gauß} ≡ 0$ und damit auch $C_{\rm BPSK} ≡ 0$ .
(3) Richtig sind die Aussagen 2, 3 und 5:
- Der rote Kurvenzug $C_{\rm rot}$ liegt stets oberhalb von $C_{\rm BPSK}$ , aber unterhalb von $C_{\rm braun}$ und der Shannon–Grenzkurve $C_{\rm Gauß}$ .
- Die Aussagen gelten auch, wenn für gewisse $E_{\rm S}/{N_0}$–Werte Kurven innerhalb der Zeichengenauigkeit nicht zu unterscheiden sind.
- Aus dem Grenzwert $C_{\rm rot}= 2 \ \rm bit/Kanalzugriff$ für $E_{\rm S}/{N_0} → ∞$ ergibt sich der Symbolumfang $M_X = |X| = 4$ .
- Die rote Kurve beschreibt also die 4–ASK. $M_X = |X| = 2$ würde für die BPSK gelten.
- Die 4–QAM führt genau zum gleichen Endwert „2 bit/Kanalzugriff”. Für kleine $E_{\rm S}/{N_0}$–Werte liegt aber die Kanalkapazität $C_{\rm 4–QAM}$ oberhalb der roten Kurve, da $C_{\rm rot}$ von der Gauß–Grenzkurve $C_2$ begrenzt wird, $C_{\rm 4–QAM}$ aber von $C_3$.
Die Bezeichnungen $C_2$ und $C_3$ beziehen sich hierbei auf die Teilaufgabe (1).
(4) Richtig sind die Lösungsvorschläge 1, 2 und 5:
- Aus dem braunen Kurvenverlauf erkennt man die Richtigkeit der beiden ersten Aussagen.
- Die 8–PSK mit I– und Q–Komponente – also mit $K = 2$ Dimensionen – liegt für kleine $E_{\rm S}/{N_0}$–Werte etwas oberhalb der braunen Kurve ⇒ die Antwort 3 ist falsch.
In der Grafik sind auch die beiden 8–ASK–Systeme gemäß den Vorschlägen 4 und 5 als Punkte eingezeichnet.
- Der violette Punkt liegt über der Kurve $C_{\rm 8–ASK}$ ⇒ $R = 2.5$ und $10 \cdot \lg (E_{\rm S}/{N_0}) = 10 \ \rm dB$ reichen nicht aus, um die 8–ASK fehlerfrei decodieren zu können ⇒ $R > C$ ⇒ das Kanalcodierungstheorem wird nicht erfüllt ⇒ Antwort 4 ist falsch.
- Reduziert man aber die Coderate gemäß dem gelben Punkt bei gleichem $10 \cdot \lg (E_{\rm S}/{N_0}) = 10 \ \rm dB$ auf $R = 2 < C_{\rm 8–ASK}$, so wird das Kanalcodierungstheorem erfüllt ⇒ Antwort 5 ist richtig.