Difference between revisions of "Aufgaben:Exercise 4.Ten: QPSK Channel Capacity"

From LNTwww
Line 5: Line 5:
 
[[File:P_ID2957__Inf_A_4_10_neu.png|right|frame|Kapazitätskurven für BPSK und QPSK]]
 
[[File:P_ID2957__Inf_A_4_10_neu.png|right|frame|Kapazitätskurven für BPSK und QPSK]]
 
Gegeben sind die AWGN–Kanalkapazitätsgrenzkurven für die Modulationsverfahren
 
Gegeben sind die AWGN–Kanalkapazitätsgrenzkurven für die Modulationsverfahren
* [[Modulationsverfahren/Lineare_digitale_Modulationsverfahren#BPSK_.E2.80.93_Binary_Phase_Shift_Keying|Binary Phase Shift Keying]] (BPSK),
+
* [[Modulationsverfahren/Lineare_digitale_Modulationsverfahren#BPSK_.E2.80.93_Binary_Phase_Shift_Keying|Binary Phase Shift Keying]]  (BPSK),
* [[Modulationsverfahren/Quadratur–Amplitudenmodulation#Weitere_Signalraumkonstellationen|Quaternary Phase Shift Keying]] (4–PSK oder auch QPSK).
+
* [[Modulationsverfahren/Quadratur–Amplitudenmodulation#Weitere_Signalraumkonstellationen|Quaternary Phase Shift Keying]]  (4–PSK oder auch QPSK).
  
  
Die Kanalkapazitäten  $C_\text{BPSK}$ und $C_\text{QPSK}$ geben gleichzeitig die maximale Coderate $R_{\rm max}$ an, mit der bei BPSK (bzw. QPSK) die Bitfehlerwahrscheinlichkeit $p_\text{B} ≡ 0$ mit geeigneter Kanalcodierung asymptotisch erreichbar ist.
+
Die Kanalkapazitäten  $C_\text{BPSK}$  und  $C_\text{QPSK}$  geben gleichzeitig die maximale Coderate  $R_{\rm max}$  an, mit der bei BPSK (bzw. QPSK) die Bitfehlerwahrscheinlichkeit  $p_\text{B} ≡ 0$  mit geeigneter Kanalcodierung asymptotisch erreichbar ist.
  
Das obere Diagramm zeigt die Abhängigkeit von der Kenngröße $10 \cdot \lg (E_{\rm B}/{N_0})$ in $\rm dB$, wobei $E_{\rm B}$ die „Energie pro Informationsbit” angibt.
+
Das obere Diagramm zeigt die Abhängigkeit von der Kenngröße  $10 \cdot \lg (E_{\rm B}/{N_0})$  in  $\rm dB$, wobei  $E_{\rm B}$  die „Energie pro Informationsbit” angibt.
*Für große $E_{\rm B}/{N_0}$–Werte liefert die BPSK–Kurve die maximale Coderate $R ≈ 1$.  
+
*Für große  $E_{\rm B}/{N_0}$–Werte liefert die BPSK–Kurve die maximale Coderate  $R ≈ 1$.  
*Aus der QPSK–Kurve kann dagegen $R ≈ 2$ abgelesen werden.
+
*Aus der QPSK–Kurve kann dagegen  $R ≈ 2$  abgelesen werden.
  
  
Die Kapazitätskurven für digitalen Eingang (jeweils mit der  Einheit „bit/Symbol”),
+
Die Kapazitätskurven für digitalen Eingang  (jeweils mit der  Einheit „bit/Symbol”),
* grüne Kurve   ⇒   $C_\text{BPSK} (E_{\rm B}/{N_0})$ und
+
* grüne Kurve   ⇒   $C_\text{BPSK} (E_{\rm B}/{N_0})$  und
 
* blaue Kurve   ⇒   $C_\text{QPSK} (E_{\rm B}/{N_0})$
 
* blaue Kurve   ⇒   $C_\text{QPSK} (E_{\rm B}/{N_0})$
  
  
sollen in der Teilaufgabe '''(3)''' in Bezug gesetzt werden zu zwei Shannon–Grenzkurven, die jeweils für eine Gaußsche Eingangsverteilung gültig sind:
+
sollen in der Teilaufgabe  '''(3)'''  in Bezug gesetzt werden zu zwei Shannon–Grenzkurven, die jeweils für eine Gaußsche Eingangsverteilung gültig sind:
 
:$$C_1( E_{\rm B}/{N_0}) = {1}/{2} \cdot  {\rm log}_2 \hspace{0.1cm} ( 1 + \frac { 2\cdot R \cdot E_{\rm B}}{N_0}) ,$$
 
:$$C_1( E_{\rm B}/{N_0}) = {1}/{2} \cdot  {\rm log}_2 \hspace{0.1cm} ( 1 + \frac { 2\cdot R \cdot E_{\rm B}}{N_0}) ,$$
 
:$$C_2( E_{\rm B}/{N_0}) =  {\rm log}_2 \hspace{0.1cm} ( 1 + \frac { R \cdot E_{\rm B}}{N_0}) .$$
 
:$$C_2( E_{\rm B}/{N_0}) =  {\rm log}_2 \hspace{0.1cm} ( 1 + \frac { R \cdot E_{\rm B}}{N_0}) .$$
  
Die beiden Kurven geben gleichzeitig die maximale Coderate $R_{\rm max}$ an, mit der durch lange Kanalcodes entsprechend dem [[Informationstheorie/Anwendung_auf_die_Digitalsignalübertragung#Definition_und_Bedeutung_der_Kanalkapazit.C3.A4t|Kanalcodierungstheorem]] eine fehlerfreie Übertragung möglich ist. Natürlich gelten für  $C_1( E_{\rm B}/{N_0})$   bzw.   $C_2( E_{\rm B}/{N_0})$  unterschiedliche Randbedingungen. Welche, sollen Sie herausfinden.
+
Die beiden Kurven geben gleichzeitig die maximale Coderate  $R_{\rm max}$  an, mit der durch lange Kanalcodes entsprechend dem  [[Informationstheorie/Anwendung_auf_die_Digitalsignalübertragung#Definition_und_Bedeutung_der_Kanalkapazit.C3.A4t|Kanalcodierungstheorem]]  eine fehlerfreie Übertragung möglich ist.  Natürlich gelten für  $C_1( E_{\rm B}/{N_0})$   bzw.   $C_2( E_{\rm B}/{N_0})$  unterschiedliche Randbedingungen.  Welche, das sollen Sie herausfinden.
  
Die Abszisse im unteren Diagramm ist dagegen   $10 \cdot \lg (E_{\rm S}/{N_0})$  mit der „Energie pro Symbol” $(E_{\rm S})$. Zu erkennen ist, dass die beiden Endwerte gegenüber der oberen Darstellung nicht verändert werden:
+
Die Abszisse im unteren Diagramm ist dagegen   $10 \cdot \lg (E_{\rm S}/{N_0})$  mit der „Energie pro Symbol”  $(E_{\rm S})$.  Zu erkennen ist, dass die beiden Grenzwerte gegenüber der oberen Darstellung nicht verändert werden:
 
:$$C_{\rm BPSK}( E_{\rm S}/{N_0} \to \infty) = C_{\rm BPSK}( E_{\rm B}/{N_0} \to \infty)  = 1 \ \rm bit/Symbol,$$
 
:$$C_{\rm BPSK}( E_{\rm S}/{N_0} \to \infty) = C_{\rm BPSK}( E_{\rm B}/{N_0} \to \infty)  = 1 \ \rm bit/Symbol,$$
 
:$$C_{\rm QPSK}( E_{\rm S}/{N_0} \to \infty) = C_{\rm QPSK}( E_{\rm B}/{N_0} \to \infty)  = 2 \ \rm bit/Symbol.$$
 
:$$C_{\rm QPSK}( E_{\rm S}/{N_0} \to \infty) = C_{\rm QPSK}( E_{\rm B}/{N_0} \to \infty)  = 2 \ \rm bit/Symbol.$$
 +
 +
 +
 +
 +
  
  
  
 
''Hinweise:''  
 
''Hinweise:''  
*Die Aufgabe gehört zum  Kapitel  [[Informationstheorie/AWGN–Kanalkapazität_bei_wertkontinuierlichem_Eingang|AWGN–Kanalkapazität bei wertkontinuierlichem Eingang]].
+
*Die Aufgabe gehört zum  Kapitel  [[Informationstheorie/AWGN–Kanalkapazität_bei_wertdiskretem_Eingang|AWGN–Kanalkapazität bei wertdiskretem Eingang]].
 
*Bezug genommen wird insbesondere auf die Seite  [[Informationstheorie/AWGN–Kanalkapazität_bei_wertdiskretem_Eingang#Maximale_Coderate_f.C3.BCr_QAM.E2.80.93Strukturen|Maximale Coderate für QAM-Strukturen]].  
 
*Bezug genommen wird insbesondere auf die Seite  [[Informationstheorie/AWGN–Kanalkapazität_bei_wertdiskretem_Eingang#Maximale_Coderate_f.C3.BCr_QAM.E2.80.93Strukturen|Maximale Coderate für QAM-Strukturen]].  
  

Revision as of 13:28, 19 February 2020

Kapazitätskurven für BPSK und QPSK

Gegeben sind die AWGN–Kanalkapazitätsgrenzkurven für die Modulationsverfahren


Die Kanalkapazitäten  $C_\text{BPSK}$  und  $C_\text{QPSK}$  geben gleichzeitig die maximale Coderate  $R_{\rm max}$  an, mit der bei BPSK (bzw. QPSK) die Bitfehlerwahrscheinlichkeit  $p_\text{B} ≡ 0$  mit geeigneter Kanalcodierung asymptotisch erreichbar ist.

Das obere Diagramm zeigt die Abhängigkeit von der Kenngröße  $10 \cdot \lg (E_{\rm B}/{N_0})$  in  $\rm dB$, wobei  $E_{\rm B}$  die „Energie pro Informationsbit” angibt.

  • Für große  $E_{\rm B}/{N_0}$–Werte liefert die BPSK–Kurve die maximale Coderate  $R ≈ 1$.
  • Aus der QPSK–Kurve kann dagegen  $R ≈ 2$  abgelesen werden.


Die Kapazitätskurven für digitalen Eingang  (jeweils mit der Einheit „bit/Symbol”),

  • grüne Kurve   ⇒   $C_\text{BPSK} (E_{\rm B}/{N_0})$  und
  • blaue Kurve   ⇒   $C_\text{QPSK} (E_{\rm B}/{N_0})$


sollen in der Teilaufgabe  (3)  in Bezug gesetzt werden zu zwei Shannon–Grenzkurven, die jeweils für eine Gaußsche Eingangsverteilung gültig sind:

$$C_1( E_{\rm B}/{N_0}) = {1}/{2} \cdot {\rm log}_2 \hspace{0.1cm} ( 1 + \frac { 2\cdot R \cdot E_{\rm B}}{N_0}) ,$$
$$C_2( E_{\rm B}/{N_0}) = {\rm log}_2 \hspace{0.1cm} ( 1 + \frac { R \cdot E_{\rm B}}{N_0}) .$$

Die beiden Kurven geben gleichzeitig die maximale Coderate  $R_{\rm max}$  an, mit der durch lange Kanalcodes entsprechend dem  Kanalcodierungstheorem  eine fehlerfreie Übertragung möglich ist.  Natürlich gelten für  $C_1( E_{\rm B}/{N_0})$   bzw.   $C_2( E_{\rm B}/{N_0})$  unterschiedliche Randbedingungen.  Welche, das sollen Sie herausfinden.

Die Abszisse im unteren Diagramm ist dagegen   $10 \cdot \lg (E_{\rm S}/{N_0})$  mit der „Energie pro Symbol”  $(E_{\rm S})$.  Zu erkennen ist, dass die beiden Grenzwerte gegenüber der oberen Darstellung nicht verändert werden:

$$C_{\rm BPSK}( E_{\rm S}/{N_0} \to \infty) = C_{\rm BPSK}( E_{\rm B}/{N_0} \to \infty) = 1 \ \rm bit/Symbol,$$
$$C_{\rm QPSK}( E_{\rm S}/{N_0} \to \infty) = C_{\rm QPSK}( E_{\rm B}/{N_0} \to \infty) = 2 \ \rm bit/Symbol.$$





Hinweise:


Fragebogen

1

Unterscheiden sich QPSK und 4–QAM aus informationstheoretischer Sicht?

Ja.
Nein.

2

Wie lässt sich  $C_{\rm QPSK}( E_{\rm B}/{N_0})$  aus  $C_{\rm BPSK}( E_{\rm B}/{N_0})$  konstruieren?

Durch Verdopplung:   $C_{\rm QPSK}( E_{\rm B}/{N_0}) = 2 \cdot C_{\rm BPSK}( E_{\rm B}/{N_0})$.
Zusätzlich durch eine Verschiebung nach rechts.
Zusätzlich durch eine Verschiebung nach links.
$C_{\rm QPSK}( E_{\rm B}/{N_0})$  kann man aus  $C_{\rm BPSK}( E_{\rm B}/{N_0})$   nicht konstruieren.

3

Welcher Zusammenhang besteht zu den Shannon–Grenzkurven?

Es gilt   $C_{\rm BPSK}( E_{\rm B}/{N_0}) \le C_{\rm 1}( E_{\rm B}/{N_0})$.
Es gilt   $C_{\rm BPSK}( E_{\rm B}/{N_0}) \le C_{\rm 2}( E_{\rm B}/{N_0})$.
Es gilt   $C_{\rm QPSK}( E_{\rm B}/{N_0}) \le C_{\rm 1}( E_{\rm B}/{N_0})$.
Es gilt   $C_{\rm QPSK}( E_{\rm B}/{N_0}) \le C_{\rm 2}( E_{\rm B}/{N_0})$.

4

Wie lässt sich  $C_{\rm QPSK}( E_{\rm S}/{N_0})$  aus  $C_{\rm BPSK}( E_{\rm S}/{N_0})$  konstruieren?

Durch Verdopplung:   $C_{\rm QPSK}( E_{\rm S}/{N_0}) = 2 \cdot C_{\rm BPSK}( E_{\rm S}/{N_0})$.
Zusätzlich durch eine Verschiebung nach rechts.
Zusätzlich durch eine Verschiebung nach links.
$C_{\rm QPSK}( E_{\rm S}/{N_0})$  kann man aus  $C_{\rm BPSK}( E_{\rm S}/{N_0})$  nicht konstruieren.


Musterlösung

QPSK– und 4–QAM–Signalraumkonstellation

(1)  Die Grafik zeigt die Signalraumkonstellationen für

  • Quaternary Phase Shift Keying (QPSK), und
  • vierstufige Quadraturamplitudenmodulation (4–QAM).


Letztere wird auch als  π/4–QPSK bezeichnet. Beide sind aus informationstheoretischer Sicht identisch   ⇒   Antwort NEIN.


(2)  Richtig ist der Lösungsvorschlag 1:

  • Die 4–QAM kann man als zwei BPSK–Konstellationen in orthogonalen Ebenen betrachten, wobei die Energie pro Informationsbit  $(E_{\rm B})$  in beiden Fällen gleich ist.
  • Da entsprechend der Teilaufgabe (1) die 4–QAM mit der QSPK identisch ist, gilt tatsächlich:
$$C_{\rm QPSK}( E_{\rm B}/{N_0}) = 2 \cdot C_{\rm BPSK}( E_{\rm B}/{N_0}).$$


(3)  In der unteren Grafik sind die beiden angegebenen Shannon–Grenzkurven zusammen mit  $C_{\rm BPSK}( E_{\rm B}/{N_0})$  und  $C_{\rm QPSK}( E_{\rm B}/{N_0})$  skizziert:

Vier Kapazitätskurven mit unterschiedlichen Aussagen
$$C_1( E_{\rm B}/{N_0}) = {1}/{2} \cdot {\rm log}_2 \hspace{0.1cm} ( 1 + \frac { 2 \cdot R \cdot E_{\rm B}}{N_0}) ,$$
$$C_2( E_{\rm B}/{N_0}) = {\rm log}_2 \hspace{0.1cm} ( 1 + \frac { R \cdot E_{\rm B}}{N_0}) .$$

Man erkennt aus dieser Skizze:   Richtig sind die Lösungsvorschläge 1, 2 und 4.

  • Die grün–gestrichelte Kurve  $C_1( E_{\rm B}/{N_0})$  gilt für den AWGN–Kanal mit gaußverteiltem Eingang. Für die Coderate $R =1$ sind nach dieser Kurve  $10 \cdot \lg (E_{\rm B}/{N_0}) = 1.76\ \rm dB$  erforderlich. Für $R =2$ benötigt man dagegen  $10 \cdot \lg (E_{\rm B}/{N_0}) = 5.74\ \rm dB$.
  • Die blau–gestrichelte Kurve  $C_2( E_{\rm B}/{N_0})$  gibt die Shannon–Grenze für $K=2$ parallele Gaußkanäle an. Hier benötigt man für  $R =1$  $10 \cdot \lg (E_{\rm B}/{N_0}) = 0\ \rm dB$  bzw.  $10 \cdot \lg (E_{\rm B}/{N_0}) = 1.76\ \rm dB$  für  $R =2$.
  • Die eindimensionale BPSK liegt im gesamten Bereich unterhalb von  $C_1$  und damit natürlich auch unterhalb von  $C_2 > C_1$.
  • Die zweidimensionale QPSK liegt erwartungsgemäß unter der für sie relevanten Grenzkurve  $C_2$. Sie liegt aber im unteren Bereich (bis nahezu 6 dB) oberhalb von  $C_1$.


(4)  Die  $C_{\rm QPSK}( E_{\rm B}/{N_0})$–Kurve kann ebenfalls aus  $C_{\rm BPSK}( E_{\rm B}/{N_0})$  konstruiert werden und zwar

  • zum einen durch Verdopplung:
$$C_{\rm BPSK}(10 \cdot {\rm lg} \hspace{0.1cm}E_{\rm S}/{N_0}) \hspace{0.3cm}\Rightarrow \hspace{0.3cm} 2 \cdot C_{\rm BPSK}(10 \cdot {\rm lg} \hspace{0.1cm}E_{\rm S}/{N_0}) ,$$
  • sowie durch eine Verschiebung um $3\ \rm dB$ nach rechts:
$$C_{\rm QPSK}(10 \cdot {\rm lg} \hspace{0.1cm}E_{\rm S}/{N_0}) = 2 \cdot C_{\rm BPSK}(10 \cdot {\rm lg} \hspace{0.1cm}E_{\rm S}/{N_0} - 3\,{\rm dB}) .$$
  • Richtig sind die beiden ersten Lösungsvorschläge.
  • Der zweite Vorschlag berücksichtigt, dass bei QPSK die Energie in einer Dimension nur  $E_{\rm S}/2$  beträgt.