Difference between revisions of "Aufgaben:Exercise 1.1: Dual Slope Loss Model"
Line 47: | Line 47: | ||
$$V_{\rm P}(d) = V_{\rm 0} + \gamma_0 \cdot 10\,{\rm dB} \cdot {\rm lg} \hspace{0.15cm} \left ( {d}/{d_0} \right ) | $$V_{\rm P}(d) = V_{\rm 0} + \gamma_0 \cdot 10\,{\rm dB} \cdot {\rm lg} \hspace{0.15cm} \left ( {d}/{d_0} \right ) | ||
+ (\gamma_1 - \gamma_0) \cdot 10\,{\rm dB} \cdot {\rm lg} \hspace{0.1cm} \left ({d}/{d_{\rm BP}} \right )$$ | + (\gamma_1 - \gamma_0) \cdot 10\,{\rm dB} \cdot {\rm lg} \hspace{0.1cm} \left ({d}/{d_{\rm BP}} \right )$$ | ||
− | then profile A and profile B for d ≥ d_{\rm BP} would be identical | + | :then profile A and profile B for d ≥ d_{\rm BP} would be identical |
− | *In this case, however, | + | *In this case, however, profile $\rm B$ would be above profile $\rm A$ for $(d < d_{\rm BP}) , suggesting clearly too good conditions. For example, d = d_0 = 1 \ \ \rm m with the given numerical values gives a result that is 40 \ \ \rm dB$ too good: |
$$V_{\rm P}(d) = V_{\rm 0} + \gamma_0 \cdot 10\,{\rm dB} \cdot {\rm lg} \hspace{0.1cm} \left ( {d}/{d_0} \right ) + (\gamma_1 - \gamma_0) \cdot 10\,{\rm dB} \cdot {\rm lg} \hspace{0.1cm} \left ({d}/{d_{\rm BP}} \right ) =10\,{\rm dB} + 2 \cdot 10\,{\rm dB} \cdot {\rm lg} \hspace{0.1cm} \left ({1}/{100} \right ) | $$V_{\rm P}(d) = V_{\rm 0} + \gamma_0 \cdot 10\,{\rm dB} \cdot {\rm lg} \hspace{0.1cm} \left ( {d}/{d_0} \right ) + (\gamma_1 - \gamma_0) \cdot 10\,{\rm dB} \cdot {\rm lg} \hspace{0.1cm} \left ({d}/{d_{\rm BP}} \right ) =10\,{\rm dB} + 2 \cdot 10\,{\rm dB} \cdot {\rm lg} \hspace{0.1cm} \left ({1}/{100} \right ) | ||
= -30\,{\rm dB} \hspace{0.05cm}. $$ | = -30\,{\rm dB} \hspace{0.05cm}. $$ | ||
Line 55: | Line 55: | ||
− | ===Questionnaire== | + | ===Questionnaire=== |
<quiz display=simple> | <quiz display=simple> | ||
Line 67: | Line 67: | ||
{What is the receive power after 100 m with both profiles? | {What is the receive power after 100 m with both profiles? | ||
− | |type="{}" | + | |type="{}"} |
Profile A:PE(d=100 m) = { 0.5 3% } mW | Profile A:PE(d=100 m) = { 0.5 3% } mW | ||
Profile B:PE(d=100 m) = { 0.125 3% } mW | Profile B:PE(d=100 m) = { 0.125 3% } mW | ||
Line 78: | Line 78: | ||
|type="{}"} | |type="{}"} | ||
ΔV_{\rm P}(d = 200 \ \rm m)\ = \ { 3.5 3% } \ \rm dB | ΔV_{\rm P}(d = 200 \ \rm m)\ = \ { 3.5 3% } \ \rm dB | ||
− | </quiz | + | </quiz> |
=== sample solution=== | === sample solution=== |
Revision as of 16:05, 25 March 2020
To simulate path loss in an urban environment, the asymptotic dual-slope model is often used, which is shown as a red curve in the diagram. This simple model is characterized by two linear sections separated by the so-called breakpoint (BP):
- For d \le d_{\rm BP} and the exponent \gamma_0 we have:
V_{\rm P}(d) = V_{\rm 0} + \gamma_0 \cdot 10\,{\rm dB} \cdot {\rm lg} \hspace{0.15cm} ({d}/{d_0})\hspace{0.05cm}.
- For d > d_{\rm BP} we must apply the path loss exponent \gamma_1 where \gamma_1 > \gamma_0 :
V_{\rm P}(d) = V_{\rm BP} + \gamma_1 \cdot 10\,{\rm dB} \cdot {\rm lg} \hspace{0.15cm} ({d}/{d_{\rm BP}})\hspace{0.05cm}.
In these equations, the variables are:
- V_0 is the path loss (in dB) at d_0 (normalization distance).
- V_{\rm BP} is the path loss (in dB) at d=d_{\rm BP} ("Breakpoint").
The graph applies to the model parameters
d_0 = 1\,{\rm m}\hspace{0.05cm},\hspace{0.2cm}d_{\rm BP} = 100\,{\rm m}\hspace{0.05cm},\hspace{0.2cm}
V_0 = 10\,{\rm dB}\hspace{0.05cm},\hspace{0.2cm}\gamma_0 = 2 \hspace{0.05cm},\hspace{0.2cm}\gamma_1 = 4 \hspace{0.3cm}
\Rightarrow \hspace{0.3cm}
V_{\rm BP} = 50\,{\rm dB}\hspace{0.05cm}.
In the questions, this piece-wise defined profile is called \rm A.
The second curve is the profile \rm B given by the following equation: V_{\rm P}(d) = V_{\rm 0} + \gamma_0 \cdot 10\,{\rm dB} \cdot {\rm lg} \hspace{0.1cm} \left ( {d}/{d_0} \right ) + (\gamma_1 - \gamma_0) \cdot 10\,{\rm dB} \cdot {\rm lg} \hspace{0.1cm} \left (1 + {d}/{d_{\rm BP}} \right )\hspace{0.05cm}.
With this dual model, the entire distance course can be written in closed form, and the received power depends on the distance d according to the following equation:
- P_{\rm E}(d) = \frac{P_{\rm S} \cdot G_{\rm S} \cdot G_{\rm E} /V_{\rm zus}}{K_{\rm P}(d)} \hspace{0.05cm},\hspace{0.2cm}K_{\rm P}(d) = 10^{V_{\rm P}(d)/10} \hspace{0.05cm}.
Here, all parameters are in natural units (not in dB). The transmit power is assumed to be P_{\rm S} = 5 \ \rm W . The other quantities have the following meanings and values:
- 10 \cdot \lg \ G_{\rm S} = 17 \ \rm dB (gain of the transmit antenna),
- 10 \cdot \lg \ G_{\rm E} = -3 \ \ \rm dB (gain of receiving antenna – so actually a loss),
- 10 \cdot \lg \ V_{\rm zus} = 4 \ \ \rm dB (loss through feeds).
Notes:
- The task belongs to the chapter Distance-dependent attenuation and shading.
- If the profile \rm B were
V_{\rm P}(d) = V_{\rm 0} + \gamma_0 \cdot 10\,{\rm dB} \cdot {\rm lg} \hspace{0.15cm} \left ( {d}/{d_0} \right ) + (\gamma_1 - \gamma_0) \cdot 10\,{\rm dB} \cdot {\rm lg} \hspace{0.1cm} \left ({d}/{d_{\rm BP}} \right )
- then profile \rm A and profile \rm B for d ≥ d_{\rm BP} would be identical
- In this case, however, profile \rm B would be above profile \rm A for (d < d_{\rm BP}) , suggesting clearly too good conditions. For example, d = d_0 = 1 \ \ \rm m with the given numerical values gives a result that is 40 \ \ \rm dB too good:
V_{\rm P}(d) = V_{\rm 0} + \gamma_0 \cdot 10\,{\rm dB} \cdot {\rm lg} \hspace{0.1cm} \left ( {d}/{d_0} \right ) + (\gamma_1 - \gamma_0) \cdot 10\,{\rm dB} \cdot {\rm lg} \hspace{0.1cm} \left ({d}/{d_{\rm BP}} \right ) =10\,{\rm dB} + 2 \cdot 10\,{\rm dB} \cdot {\rm lg} \hspace{0.1cm} \left ({1}/{100} \right ) = -30\,{\rm dB} \hspace{0.05cm}.
Questionnaire
sample solution
ML head '(1) You can see directly from the graphic that the profile (A) with the two linear sections at „Breakpoint” (d = 100 \ \rm m) gives the following result: V_{\rm P}(d = 100\,{\rm m})\hspace{0.15cm} \underline{= 50\,{\rm dB}} \hspace{0.05cm}.
(2) With the profile (B) on the other hand, using V_0 = 10 \ \rm dB, \gamma_0 = 2 and \gamma_1 = 4: V_{\rm P}(d = 100\,{\rm m}) = 10\,{\rm dB} + 20\,{\rm dB}\cdot {\rm lg} \hspace{0.1cm}(100)+ 20\,{\rm dB}\cdot {\rm lg} \hspace{0.1cm}(2) \hspace{0.15cm} \underline{\approx 56\,{\rm dB}} \hspace{0.05cm}.
(3) The antenna gains from the transmitter (+17 \ \ \rm dB) and receiver (-3 \ \rm dB) and the internal losses of the base station (+4 \ \rm dB) can be combined to 10 \cdot {\rm lg}\hspace{0.1cm} G = 10 \cdot {\rm lg}\hspace{0.1cm} G_{\rm S} + 10 \cdot {\rm lg} \hspace{0.1cm} G_{\rm E} - 10 \cdot {\rm lg}\hspace{0.1cm} V_{\rm zus} = 17\,{\rm dB} -3\,{\rm dB} - 4\,{\rm dB} = 10\,{\rm dB} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} {G = 10} \hspace{0.05cm}.
- For the profile '(A) the following path loss occurred:
V_{\rm P}(d = 100\,{\rm m})\hspace{0.05cm} {= 50\,{\rm dB}} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} K_{\rm P} = 10^5 \hspace{0.05cm}.
- This gives you \ \ \rm m for the receiving power after d = 100:
P_{\rm E}(d = 100\,{\rm m}) = \frac{P_{\rm S} \cdot G}{K_{\rm P}} = \frac{5\,{\,} \cdot 10}{10^5}\hspace{0.15cm} \underline{= 0.5\,{\rm mW}} \hspace{0.05cm}.
- For profile '(B) the receiving power is about 4 less:
- P_{\rm E}(d = 100\,{\rm m}) = \frac{5\,{\rm W} \cdot 10}{10^{5.6}}\approx \frac{5\,{\rm W} \cdot 10}{4 \cdot 10^{5}}\hspace{0.15cm} \underline{= 0.125\,{\rm mW}} \hspace{0.05cm}.
(4) Below the breakpoint (d < 100 \ \rm m) the deviation is determined by the last summand of profile (B): {\rm \delta}V_{\rm P}(d = 50\,{\rm m}) = (\gamma_1 - \gamma_0) \cdot 10\,{\rm dB} \cdot {\rm lg} \hspace{0.1cm} \left (1 + {d}/{d_{\rm BP}} \right )= (4-2) \cdot 10\,{\rm dB} \cdot {\rm lg} \hspace{0.1cm} (1.5)\hspace{0.15cm} \underline{\approx 3.5\,{\rm dB}} \hspace{0.05cm}.
'(5) Here the profile (A) with V_{\rm BP} = 50 \ \rm dB: V_{\rm P}(d = 200\,{\rm m}) = 50\,{\rm dB} + 4 \cdot 10\,{\rm dB} \cdot {\rm lg} \hspace{0.1cm} (2)\hspace{0.15cm} {\approx 62\,{\rm dB}} \hspace{0.05cm}.
- On the other hand, the profile '(B) leads to the result:
V_{\rm P}(d = 200\,{\rm m}) = 50\,{\rm dB} + 20\,{\rm dB} \cdot {\rm lg} \hspace{0.1cm} (200) + 20\,{\rm dB} \cdot {\rm lg} \hspace{0.1cm} (3) = 10\,{\rm dB} + 46\,{\rm dB} + 9.5\,{\rm dB} \hspace{0.15cm} {\approx 65.5\,{\rm dB}} \Rightarrow \hspace{0.3cm} {\rm \delta}V_{\rm P}(d = 200\,{\rm m}) = 65.5\,{\rm dB} - 62\,{\rm dB}\hspace{0.15cm} \underline{\approx 3.5\,{\rm dB}} \hspace{0.05cm}.
- You can see that \Delta V_{\rm P} is almost symmetrical to d = d_{\rm BP} if you plot the distance d logarithmically as in the given graph.