Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

Difference between revisions of "Aufgaben:Exercise 1.1: Dual Slope Loss Model"

From LNTwww
Line 47: Line 47:
 
$$V_{\rm P}(d) = V_{\rm 0} + \gamma_0 \cdot 10\,{\rm dB} \cdot {\rm lg} \hspace{0.15cm} \left ( {d}/{d_0} \right )  
 
$$V_{\rm P}(d) = V_{\rm 0} + \gamma_0 \cdot 10\,{\rm dB} \cdot {\rm lg} \hspace{0.15cm} \left ( {d}/{d_0} \right )  
 
  + (\gamma_1 - \gamma_0) \cdot 10\,{\rm dB} \cdot {\rm lg} \hspace{0.1cm} \left ({d}/{d_{\rm BP}} \right )$$
 
  + (\gamma_1 - \gamma_0) \cdot 10\,{\rm dB} \cdot {\rm lg} \hspace{0.1cm} \left ({d}/{d_{\rm BP}} \right )$$
then profile  A  and profile  B  for  d ≥ d_{\rm BP}  would be identical  
+
:then profile  A  and profile  B  for  d ≥ d_{\rm BP}  would be identical  
*In this case, however, the lower area would contain  $(d < d_{\rm BP})$  the profile  $\rm B$  would be above profile  $\rm A$ , thus suggesting clearly too good conditions. For example,   d=d0=1  m  with the given numerical values gives a result that is   40  dB  too good:
+
*In this case, however, profile  $\rm B$  would be above profile  $\rm A$  for   $(d < d_{\rm BP})  , suggesting clearly too good conditions. For example,  d = d_0 = 1 \ \ \rm m  with the given numerical values gives a result that is  40 \ \ \rm dB$  too good:
 
$$V_{\rm P}(d) = V_{\rm 0} + \gamma_0 \cdot 10\,{\rm dB} \cdot {\rm lg} \hspace{0.1cm} \left ( {d}/{d_0} \right ) + (\gamma_1 - \gamma_0) \cdot 10\,{\rm dB} \cdot {\rm lg} \hspace{0.1cm} \left ({d}/{d_{\rm BP}} \right ) =10\,{\rm dB} + 2 \cdot 10\,{\rm dB} \cdot {\rm lg} \hspace{0.1cm} \left ({1}/{100} \right )
 
$$V_{\rm P}(d) = V_{\rm 0} + \gamma_0 \cdot 10\,{\rm dB} \cdot {\rm lg} \hspace{0.1cm} \left ( {d}/{d_0} \right ) + (\gamma_1 - \gamma_0) \cdot 10\,{\rm dB} \cdot {\rm lg} \hspace{0.1cm} \left ({d}/{d_{\rm BP}} \right ) =10\,{\rm dB} + 2 \cdot 10\,{\rm dB} \cdot {\rm lg} \hspace{0.1cm} \left ({1}/{100} \right )
 
  = -30\,{\rm dB} \hspace{0.05cm}. $$
 
  = -30\,{\rm dB} \hspace{0.05cm}. $$
Line 55: Line 55:
  
  
===Questionnaire==
+
===Questionnaire===
  
 
<quiz display=simple>
 
<quiz display=simple>
Line 67: Line 67:
  
 
{What is the receive power after&nbsp; 100  m&nbsp; with both profiles?
 
{What is the receive power after&nbsp; 100  m&nbsp; with both profiles?
|type="{}"{}
+
|type="{}"}
 
Profile A:PE(d=100 m) =  { 0.5 3% }   mW
 
Profile A:PE(d=100 m) =  { 0.5 3% }   mW
 
Profile B:PE(d=100 m) =  { 0.125 3% }   mW
 
Profile B:PE(d=100 m) =  { 0.125 3% }   mW
Line 78: Line 78:
 
|type="{}"}
 
|type="{}"}
 
ΔV_{\rm P}(d = 200 \ \rm m)\ = \ { 3.5 3% } \ \rm dB
 
ΔV_{\rm P}(d = 200 \ \rm m)\ = \ { 3.5 3% } \ \rm dB
</quiz
+
</quiz>
  
 
=== sample solution===
 
=== sample solution===

Revision as of 16:05, 25 March 2020

Dual-Slope-Pfadverlustmodell

To simulate path loss in an urban environment, the asymptotic dual-slope model is often used, which is shown as a red curve in the diagram. This simple model is characterized by two linear sections separated by the so-called breakpoint (BP):

  • For  d \le d_{\rm BP}  and the exponent   \gamma_0 we have:

V_{\rm P}(d) = V_{\rm 0} + \gamma_0 \cdot 10\,{\rm dB} \cdot {\rm lg} \hspace{0.15cm} ({d}/{d_0})\hspace{0.05cm}.

  • For  d > d_{\rm BP}  we must apply the path loss exponent  \gamma_1  where  \gamma_1 > \gamma_0 :

V_{\rm P}(d) = V_{\rm BP} + \gamma_1 \cdot 10\,{\rm dB} \cdot {\rm lg} \hspace{0.15cm} ({d}/{d_{\rm BP}})\hspace{0.05cm}.

In these equations, the variables are:

  • V_0  is the path loss (in dB) at  d_0  (normalization distance).
  • V_{\rm BP}  is the path loss (in dB) at  d=d_{\rm BP}  ("Breakpoint").


The graph applies to the model parameters d_0 = 1\,{\rm m}\hspace{0.05cm},\hspace{0.2cm}d_{\rm BP} = 100\,{\rm m}\hspace{0.05cm},\hspace{0.2cm} V_0 = 10\,{\rm dB}\hspace{0.05cm},\hspace{0.2cm}\gamma_0 = 2 \hspace{0.05cm},\hspace{0.2cm}\gamma_1 = 4 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} V_{\rm BP} = 50\,{\rm dB}\hspace{0.05cm}.

In the questions, this piece-wise defined profile is called  \rm A.

The second curve is the profile  \rm B  given by the following equation: V_{\rm P}(d) = V_{\rm 0} + \gamma_0 \cdot 10\,{\rm dB} \cdot {\rm lg} \hspace{0.1cm} \left ( {d}/{d_0} \right ) + (\gamma_1 - \gamma_0) \cdot 10\,{\rm dB} \cdot {\rm lg} \hspace{0.1cm} \left (1 + {d}/{d_{\rm BP}} \right )\hspace{0.05cm}.

With this dual model, the entire distance course can be written in closed form, and the received power depends on the distance  d  according to the following equation:

P_{\rm E}(d) = \frac{P_{\rm S} \cdot G_{\rm S} \cdot G_{\rm E} /V_{\rm zus}}{K_{\rm P}(d)} \hspace{0.05cm},\hspace{0.2cm}K_{\rm P}(d) = 10^{V_{\rm P}(d)/10} \hspace{0.05cm}.

Here, all parameters are in natural units (not in dB). The transmit power is assumed to be  P_{\rm S} = 5 \ \rm W . The other quantities have the following meanings and values:

  • 10 \cdot \lg \ G_{\rm S} = 17 \ \rm dB  (gain of the transmit antenna),
  • 10 \cdot \lg \ G_{\rm E} = -3 \ \ \rm dB  (gain of receiving antenna – so actually a loss),
  • 10 \cdot \lg \ V_{\rm zus} = 4 \ \ \rm dB  (loss through feeds).




Notes:

V_{\rm P}(d) = V_{\rm 0} + \gamma_0 \cdot 10\,{\rm dB} \cdot {\rm lg} \hspace{0.15cm} \left ( {d}/{d_0} \right ) + (\gamma_1 - \gamma_0) \cdot 10\,{\rm dB} \cdot {\rm lg} \hspace{0.1cm} \left ({d}/{d_{\rm BP}} \right )

then profile  \rm A  and profile  \rm B  for  d ≥ d_{\rm BP}  would be identical
  • In this case, however, profile  \rm B  would be above profile  \rm A  for   (d < d_{\rm BP})  , suggesting clearly too good conditions. For example,   d = d_0 = 1 \ \ \rm m  with the given numerical values gives a result that is   40 \ \ \rm dB  too good:

V_{\rm P}(d) = V_{\rm 0} + \gamma_0 \cdot 10\,{\rm dB} \cdot {\rm lg} \hspace{0.1cm} \left ( {d}/{d_0} \right ) + (\gamma_1 - \gamma_0) \cdot 10\,{\rm dB} \cdot {\rm lg} \hspace{0.1cm} \left ({d}/{d_{\rm BP}} \right ) =10\,{\rm dB} + 2 \cdot 10\,{\rm dB} \cdot {\rm lg} \hspace{0.1cm} \left ({1}/{100} \right ) = -30\,{\rm dB} \hspace{0.05cm}.



Questionnaire

1

How large is the path loss (in  \rm dB)  to  d= 100 \ \rm m  according to profile  \rm A?

V_{\rm P}(d = 100 \ \rm m) \ = \

\ \rm dB

2

How large is the path loss (in  \rm dB)  to  d= 100 \ \rm m  according to profile  \rm B?

V_{\rm P}(d = 100 \ \rm m) \ = \

\ \rm dB

3

What is the receive power after  100 \ \ \rm m  with both profiles?

Profile \text{A:} \hspace{0.2cm} P_{\rm E}(d = 100 \ \rm m) \ = \

\ \ \rm mW
Profile \text{B:} \hspace{0.2cm} P_{\rm E}(d = 100 \ \rm m) \ = \

\ \ \rm mW

4

How big is the deviation  ΔV_{\rm P}  between profile  \rm A  and  \rm B  at  d = 50 \ \rm m?

ΔV_{\rm P}(d = 50 \ \rm m) \ = \

\ \rm dB

5

How big is the deviation  ΔV_{\rm P}  between profile  \rm A  and  \rm B  at  d = 200 \ \rm m?

ΔV_{\rm P}(d = 200 \ \rm m)\ = \

\ \rm dB


sample solution

ML head '(1)  You can see directly from the graphic that the profile (A) with the two linear sections at „Breakpoint” (d = 100 \ \rm m) gives the following result: V_{\rm P}(d = 100\,{\rm m})\hspace{0.15cm} \underline{= 50\,{\rm dB}} \hspace{0.05cm}.


(2)  With the profile (B) on the other hand, using V_0 = 10 \ \rm dB, \gamma_0 = 2 and \gamma_1 = 4: V_{\rm P}(d = 100\,{\rm m}) = 10\,{\rm dB} + 20\,{\rm dB}\cdot {\rm lg} \hspace{0.1cm}(100)+ 20\,{\rm dB}\cdot {\rm lg} \hspace{0.1cm}(2) \hspace{0.15cm} \underline{\approx 56\,{\rm dB}} \hspace{0.05cm}.


(3)  The antenna gains from the transmitter (+17 \ \ \rm dB) and receiver (-3 \ \rm dB) and the internal losses of the base station (+4 \ \rm dB) can be combined to 10 \cdot {\rm lg}\hspace{0.1cm} G = 10 \cdot {\rm lg}\hspace{0.1cm} G_{\rm S} + 10 \cdot {\rm lg} \hspace{0.1cm} G_{\rm E} - 10 \cdot {\rm lg}\hspace{0.1cm} V_{\rm zus} = 17\,{\rm dB} -3\,{\rm dB} - 4\,{\rm dB} = 10\,{\rm dB} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} {G = 10} \hspace{0.05cm}.

  • For the profile '(A) the following path loss occurred:

V_{\rm P}(d = 100\,{\rm m})\hspace{0.05cm} {= 50\,{\rm dB}} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} K_{\rm P} = 10^5 \hspace{0.05cm}.

This gives you \ \ \rm m for the receiving power after d = 100:

P_{\rm E}(d = 100\,{\rm m}) = \frac{P_{\rm S} \cdot G}{K_{\rm P}} = \frac{5\,{\,} \cdot 10}{10^5}\hspace{0.15cm} \underline{= 0.5\,{\rm mW}} \hspace{0.05cm}.

  • For profile '(B) the receiving power is about 4 less:
P_{\rm E}(d = 100\,{\rm m}) = \frac{5\,{\rm W} \cdot 10}{10^{5.6}}\approx \frac{5\,{\rm W} \cdot 10}{4 \cdot 10^{5}}\hspace{0.15cm} \underline{= 0.125\,{\rm mW}} \hspace{0.05cm}.


(4)  Below the breakpoint (d < 100 \ \rm m) the deviation is determined by the last summand of profile (B): {\rm \delta}V_{\rm P}(d = 50\,{\rm m}) = (\gamma_1 - \gamma_0) \cdot 10\,{\rm dB} \cdot {\rm lg} \hspace{0.1cm} \left (1 + {d}/{d_{\rm BP}} \right )= (4-2) \cdot 10\,{\rm dB} \cdot {\rm lg} \hspace{0.1cm} (1.5)\hspace{0.15cm} \underline{\approx 3.5\,{\rm dB}} \hspace{0.05cm}.


'(5)  Here the profile (A) with V_{\rm BP} = 50 \ \rm dB: V_{\rm P}(d = 200\,{\rm m}) = 50\,{\rm dB} + 4 \cdot 10\,{\rm dB} \cdot {\rm lg} \hspace{0.1cm} (2)\hspace{0.15cm} {\approx 62\,{\rm dB}} \hspace{0.05cm}.

  • On the other hand, the profile '(B) leads to the result:

V_{\rm P}(d = 200\,{\rm m}) = 50\,{\rm dB} + 20\,{\rm dB} \cdot {\rm lg} \hspace{0.1cm} (200) + 20\,{\rm dB} \cdot {\rm lg} \hspace{0.1cm} (3) = 10\,{\rm dB} + 46\,{\rm dB} + 9.5\,{\rm dB} \hspace{0.15cm} {\approx 65.5\,{\rm dB}} \Rightarrow \hspace{0.3cm} {\rm \delta}V_{\rm P}(d = 200\,{\rm m}) = 65.5\,{\rm dB} - 62\,{\rm dB}\hspace{0.15cm} \underline{\approx 3.5\,{\rm dB}} \hspace{0.05cm}.

  • You can see that \Delta V_{\rm P} is almost symmetrical to d = d_{\rm BP} if you plot the distance d logarithmically as in the given graph.