Difference between revisions of "Aufgaben:Exercise 1.1Z: Simple Path Loss Model"
m (Javier verschob die Seite Exercises:Exercise 1.1Z: Simple Path Loss Model nach Exercise 1.1Z: Simple Path Loss Model) |
|||
Line 3: | Line 3: | ||
[[File:P_ID2121__Mob_Z_1_1.png|right|frame|Bandbreitenorganisation bei DSL]] | [[File:P_ID2121__Mob_Z_1_1.png|right|frame|Bandbreitenorganisation bei DSL]] | ||
− | + | Radio transmission with line-of-sight can be described by the so-called path loss model, which is given by the following equations: | |
− | + | VP(d)=V0+γ⋅10dB⋅lg(d/d0), | |
− | + | V0=γ⋅10dB⋅lg4⋅π⋅d0λ. | |
− | + | The graphic shows the path loss VP(d) in dB. The abscissa d is also displayed logarithmically. | |
− | In | + | In the above equation are used: |
− | * | + | * the distance d of sender and receiver, |
− | * | + | * the reference distance d0=1 m, |
− | * | + | * the path loss exponent γ, |
− | * | + | * the wavelength λ of electromagnetic wave. |
− | + | Two scenarios are shown (A) and (B) with the same path loss at distance d0=1 m: | |
− | + | V0=VP(d=d0)=20dB. | |
− | + | One of these two scenarios describes the so-called <i>free space attenuation</i>, characterized by the path loss exponent γ=2. However, the equation for the free space attenuation only applies in the <i>far-field</i>, i.e. when the distance d between transmitter and receiver is greater than the „Fraunhofer–distance” | |
− | + | dF=2D2/λ. | |
− | + | Where D is the largest physical dimension of the transmitting antenna. With an λ/2–antenna, you get the simple result for this: | |
− | + | dF=2⋅(λ/2)2λ=λ/2. | |
Line 30: | Line 30: | ||
− | '' | + | ''Notes:'' |
− | * | + | * The task belongs to the chapter [[Mobile_Communication/Distancedependent%C3%A4ngige_D%C3%A4mpfung_und_Abschattung|Distance-dependent attenuation and shading]]. |
− | * | + | * The speed of light is c=3⋅108 m/s. |
Line 38: | Line 38: | ||
− | === | + | ===Questionnaire=== |
<quiz display=simple> | <quiz display=simple> | ||
− | { | + | {Which path loss exponents apply to the scenarios (A) and (B)? |
|type="{}"} | |type="{}"} | ||
γA = { 2 3% } | γA = { 2 3% } | ||
γB = { 2.5 3% } | γB = { 2.5 3% } | ||
− | { | + | {Which scenario describes the free space attenuation? |
|type="()"} | |type="()"} | ||
− | + | + | + scenario (A), |
− | - | + | - Scenario (B). |
− | { | + | {Which signal frequencies are the basis for the scenarios (A) and (B) ? |
|type="{}"} | |type="{}"} | ||
− | fA = { 240 3% } MHz | + | fA = { 240 3% } $\ \ \rm MHz$ |
− | fB = { 151.4 3% } MHz | + | fB = { 151.4 3% } $\ \ \rm MHz$ |
− | + | Does the free space&ndash scenario apply to all distances between $1 \ \ \rm m$ and 10 km? | |
|type="()"} | |type="()"} | ||
− | + | + | + Yes, |
− | - | + | - No. |
</quiz> | </quiz> | ||
− | === | + | ===Sample solution=== |
{{ML-Kopf}} | {{ML-Kopf}} | ||
− | '''(1) | + | '''(1)'' The (simplest) path loss equation is |
− | + | VP(d)=V0+γ⋅10dB⋅lg(d/d0). | |
− | * | + | *In scenario (A), the waste per decade (for example, between d0=1 m and d=10 m) is exactly 20 dB and in scenario (B) 25 dB. |
− | * | + | *It follows: |
− | + | γA=2_,γB=2.5_. | |
− | '''(2)''' | + | '''(2)''' Correct is <u>solution 1</u>, since the free space attenuation is characterized by the path loss exponent γ=2. |
− | '''(3)''' | + | '''(3)''' The path loss at d0=1 m is in both cases V0=20 dB. For scenario (A) the same applies: |
− | + | $$10 \cdot {\rm lg}\hspace{0.1cm} \left [ \frac{4 \cdot \pi \cdot d_0}{\lambda_{\rm A}}\right ]^2 = 20\,{\rm dB} \hspace{0.2cm} \Rightarrow \hspace{0.2cm} | |
\frac{4 \cdot \pi \cdot d_0}{\lambda_{\rm A}} = 10 \hspace{0.2cm} \Rightarrow \hspace{0.2cm} | \frac{4 \cdot \pi \cdot d_0}{\lambda_{\rm A}} = 10 \hspace{0.2cm} \Rightarrow \hspace{0.2cm} | ||
− | \lambda_{\rm A} = 4 | + | \lambda_{\rm A} = 4 \pi \cdot 0.1\,{\rm m} = 1,257\,{\rm m} |
\hspace{0.05cm}.$$ | \hspace{0.05cm}.$$ | ||
− | * | + | *The frequency fA is related to the wavelength λA over the speed of light c: |
− | + | $$f_{\rm A} = \frac{c}{\lambda_{\rm A}} = \frac{3 \cdot 10^8\,{\rm m/s}}}{1.257\,{\rm m}} = 2.39 \cdot 10^8\,{\rm Hz} | |
− | \hspace{0.15cm} \underline{\approx | + | \hspace{0.15cm} \underline{\approx 240 \,\,{\rm MHz}} |
\hspace{0.05cm}.$$ | \hspace{0.05cm}.$$ | ||
− | * | + | *On the other hand, the scenario (B) |
− | + | 10⋅lg[4⋅π⋅d0λB]2.5=20dB⇒25⋅lg[4⋅π⋅d0λB]=20dB | |
− | + | $$\Rightarrow \hspace{0.3cm} \frac{4 \cdot \pi \cdot d_0}{\lambda_{\rm B}} = 10^{0.8} \approx 6.31 | |
− | \hspace{0.3cm} \Rightarrow \hspace{0.3cm} | + | \hspace {0.3cm} \Rightarrow \hspace{0.3cm} |
{\lambda_{\rm B}} = \frac{10}{6.31} \cdot {\lambda_{\rm A}}\hspace{0.3cm} | {\lambda_{\rm B}} = \frac{10}{6.31} \cdot {\lambda_{\rm A}}\hspace{0.3cm} | ||
\Rightarrow \hspace{0.3cm} | \Rightarrow \hspace{0.3cm} | ||
− | {f_{\rm B}} = \frac{6.31}{10} \cdot {f_{\rm A}} = 0.631 \cdot 240 \,{\rm MHz}\hspace{0.15cm} \underline{\approx | + | {f_{\rm B}}} = \frac{6.31}{10} \cdot {f_{\rm A}}} = 0.631 \cdot 240 \,{\rm MHz}\hspace{0.15cm} \underline {\approx 151.4 \,\,{\rm MHz}} |
\hspace{0.05cm}.$$ | \hspace{0.05cm}.$$ | ||
− | '''(4)''' | + | '''(4)''' <u>first suggested solution</u> is correct: |
− | * | + | *In free space–scenario (A) the Fraunhofer–distance dF=λA/2≈63 cm. Thus, the following always applies d>dF. |
− | * | + | *Also in scenario (B) is because of λB≈2 m or dF≈1 m the entire displayed course correct. |
{{ML-Fuß}} | {{ML-Fuß}} | ||
Revision as of 16:44, 25 March 2020
Radio transmission with line-of-sight can be described by the so-called path loss model, which is given by the following equations: VP(d)=V0+γ⋅10dB⋅lg(d/d0), V0=γ⋅10dB⋅lg4⋅π⋅d0λ.
The graphic shows the path loss VP(d) in dB. The abscissa d is also displayed logarithmically.
In the above equation are used:
- the distance d of sender and receiver,
- the reference distance d0=1 m,
- the path loss exponent γ,
- the wavelength λ of electromagnetic wave.
Two scenarios are shown (A) and (B) with the same path loss at distance d0=1 m:
V0=VP(d=d0)=20dB.
One of these two scenarios describes the so-called free space attenuation, characterized by the path loss exponent γ=2. However, the equation for the free space attenuation only applies in the far-field, i.e. when the distance d between transmitter and receiver is greater than the „Fraunhofer–distance” dF=2D2/λ.
Where D is the largest physical dimension of the transmitting antenna. With an λ/2–antenna, you get the simple result for this: dF=2⋅(λ/2)2λ=λ/2.
Notes:
- The task belongs to the chapter Distance-dependent attenuation and shading.
- The speed of light is c=3⋅108 m/s.
Questionnaire
Sample solution
- In scenario (A), the waste per decade (for example, between d0=1 m and d=10 m) is exactly 20 dB and in scenario (B) 25 dB.
- It follows:
γA=2_,γB=2.5_.
(2) Correct is solution 1, since the free space attenuation is characterized by the path loss exponent γ=2.
(3) The path loss at d0=1 m is in both cases V0=20 dB. For scenario (A) the same applies: 10⋅lg[4⋅π⋅d0λA]2=20dB⇒4⋅π⋅d0λA=10⇒λA=4π⋅0.1m=1,257m.
- The frequency fA is related to the wavelength λA over the speed of light c:
f_{\rm A} = \frac{c}{\lambda_{\rm A}} = \frac{3 \cdot 10^8\,{\rm m/s}}}{1.257\,{\rm m}} = 2.39 \cdot 10^8\,{\rm Hz} \hspace{0.15cm} \underline{\approx 240 \,\,{\rm MHz}} \hspace{0.05cm}.
- On the other hand, the scenario (B)
10⋅lg[4⋅π⋅d0λB]2.5=20dB⇒25⋅lg[4⋅π⋅d0λB]=20dB \Rightarrow \hspace{0.3cm} \frac{4 \cdot \pi \cdot d_0}{\lambda_{\rm B}} = 10^{0.8} \approx 6.31 \hspace {0.3cm} \Rightarrow \hspace{0.3cm} {\lambda_{\rm B}} = \frac{10}{6.31} \cdot {\lambda_{\rm A}}\hspace{0.3cm} \Rightarrow \hspace{0.3cm} {f_{\rm B}}} = \frac{6.31}{10} \cdot {f_{\rm A}}} = 0.631 \cdot 240 \,{\rm MHz}\hspace{0.15cm} \underline {\approx 151.4 \,\,{\rm MHz}} \hspace{0.05cm}.
(4) first suggested solution is correct:
- In free space–scenario (A) the Fraunhofer–distance dF=λA/2≈63 cm. Thus, the following always applies d>dF.
- Also in scenario (B) is because of λB≈2 m or dF≈1 m the entire displayed course correct.