Difference between revisions of "Aufgaben:Exercise 4.4Z: Signal-to-Noise Ratio with PCM"

From LNTwww
Line 4: Line 4:
  
 
[[File:P_ID1619__Mod_Z_4_4.png|right|frame|Störabstand von PCM 30/32 im Vergleich zur ZSB–Amplitudenmodulation]]
 
[[File:P_ID1619__Mod_Z_4_4.png|right|frame|Störabstand von PCM 30/32 im Vergleich zur ZSB–Amplitudenmodulation]]
Die Grafik zeigt den Sinken–Störabstand  $10 · \lg \ ρ_v$  für die Pulscodemodulation (PCM) im Vergleich zur analogen Zweiseitenband–Amplitudenmodulation, abgekürzt mit ZSB–AM. Für letztere gilt  $ρ_v = ξ$, wobei die Leistungskenngröße
+
Die Grafik zeigt den Sinken–Störabstand  $10 · \lg \ ρ_v$  für die Pulscodemodulation  $\rm (PCM)$  im Vergleich zur analogen Zweiseitenband–Amplitudenmodulation, abgekürzt mit  $\rm  ZSB–AM$. 
 +
 
 +
Für letztere gilt  $ρ_v = ξ$, wobei die Leistungskenngröße
 
:$$\xi = \frac{\alpha^2 \cdot P_{\rm S}}{N_0 \cdot f_{\rm N}} $$
 
:$$\xi = \frac{\alpha^2 \cdot P_{\rm S}}{N_0 \cdot f_{\rm N}} $$
 
folgende Systemparameter zusammenfasst:
 
folgende Systemparameter zusammenfasst:
:* den frequenzunabhängigen Dämpfungsfaktor  $α$  des Übertragungskanals,
+
:* den frequenzunabhängigen Übertragungsfaktor  $α$  des Übertragungskanals,
 
:* die Leistung  $P_{\rm S}$  des Sendsignals  $s(t)$, auch kurz Sendeleistung genannt,
 
:* die Leistung  $P_{\rm S}$  des Sendsignals  $s(t)$, auch kurz Sendeleistung genannt,
 
:* die Nachrichtenfrequenz  $f_{\rm N}$  (Bandbreite) des cosinusförmigen Quellensignals  $q(t)$,
 
:* die Nachrichtenfrequenz  $f_{\rm N}$  (Bandbreite) des cosinusförmigen Quellensignals  $q(t)$,
Line 13: Line 15:
  
  
Für das PCM–System wurde auf der Seite  [[Modulationsverfahren/Pulscodemodulation#Absch.C3.A4tzung_der_SNR-Degradation_durch_.C3.9Cbertragungsfehler|Abschätzung der SNR-Degradation durch Bitfehler]] folgende Näherung für das Sinken–SNR angegeben, die auch Übertragungsfehler aufgrund des AWGN–Rauschens berücksichtigt:
+
Für das PCM–System wurde auf der Seite  [[Modulationsverfahren/Pulscodemodulation#Absch.C3.A4tzung_der_SNR-Degradation_durch_.C3.9Cbertragungsfehler|Abschätzung der SNR-Degradation durch Bitfehler]]  folgende Näherung für das Sinken–SNR angegeben, die auch Übertragungsfehler aufgrund des AWGN–Rauschens berücksichtigt:
 
:$$ \rho_{\upsilon}= \frac{1}{ 2^{-2N } + 4 \cdot p_{\rm B}} \hspace{0.05cm}.$$
 
:$$ \rho_{\upsilon}= \frac{1}{ 2^{-2N } + 4 \cdot p_{\rm B}} \hspace{0.05cm}.$$
 
*Hierbei bezeichnet  $N$  die Anzahl der Bit pro Abtastwert und  $p_{\rm B}$  die Bitfehlerwahrscheinlichkeit.
 
*Hierbei bezeichnet  $N$  die Anzahl der Bit pro Abtastwert und  $p_{\rm B}$  die Bitfehlerwahrscheinlichkeit.
 
* Da  $ξ$  bei digitaler Modulation auch als die ''Signalenergie pro Bit''  bezogen auf die ''Rauschleistungsdichte'' $(E_{\rm B}/N_0)$ interpretiert werden kann, gilt mit dem komplementären Gaußschen Fehlersignal  ${\rm Q}(x)$  näherungsweise:
 
* Da  $ξ$  bei digitaler Modulation auch als die ''Signalenergie pro Bit''  bezogen auf die ''Rauschleistungsdichte'' $(E_{\rm B}/N_0)$ interpretiert werden kann, gilt mit dem komplementären Gaußschen Fehlersignal  ${\rm Q}(x)$  näherungsweise:
 
:$$ p_{\rm B}= {\rm Q} \left ( \sqrt{2 \xi }\right ) \hspace{0.05cm}.$$
 
:$$ p_{\rm B}= {\rm Q} \left ( \sqrt{2 \xi }\right ) \hspace{0.05cm}.$$
 +
 +
 +
  
  
Line 26: Line 31:
 
*Die Aufgabe gehört zum  Kapitel  [[Modulationsverfahren/Pulscodemodulation|Pulscodemodulation]].
 
*Die Aufgabe gehört zum  Kapitel  [[Modulationsverfahren/Pulscodemodulation|Pulscodemodulation]].
 
*Bezug genommen wird insbesondere auf die Seiten   [[Modulationsverfahren/Pulscodemodulation#Einfluss_von_.C3.9Cbertragungsfehlern|Einfluss von Übertragungsfehlern]]  und  [[Modulationsverfahren/Pulscodemodulation#Absch.C3.A4tzung_der_SNR-Degradation_durch_.C3.9Cbertragungsfehler|Abschätzung der SNR-Degradation durch Bitfehler]].
 
*Bezug genommen wird insbesondere auf die Seiten   [[Modulationsverfahren/Pulscodemodulation#Einfluss_von_.C3.9Cbertragungsfehlern|Einfluss von Übertragungsfehlern]]  und  [[Modulationsverfahren/Pulscodemodulation#Absch.C3.A4tzung_der_SNR-Degradation_durch_.C3.9Cbertragungsfehler|Abschätzung der SNR-Degradation durch Bitfehler]].
*Bei der hier betrachteten PCM handelt es sich um die '''PCM 30/32''', deren Systemparameter zum Beispiel in der [[Aufgaben:4.1_PCM–System_30/32 |Aufgabe 4.1]] angegeben sind.
+
*Bei der hier betrachteten PCM handelt es sich um die  '''PCM 30/32''', deren Systemparameter zum Beispiel in der  [[Aufgaben:4.1_PCM–System_30/32 |Aufgabe 4.1]]  angegeben sind.
 
   
 
   
  
Line 49: Line 54:
 
$K_\text{AM → PCM} \ = \ $ { 1000 3% }  
 
$K_\text{AM → PCM} \ = \ $ { 1000 3% }  
  
{Welche Bitfehlerwahrscheinlichkeit  $p_{\rm B}$  ergibt sich für  $10 · \lg \ ξ = 6\ \rm  dB$  und  $N = N_1$   ⇒   Ergebnis der Teilaufgabe '''(1)'''?
+
{Welche Bitfehlerwahrscheinlichkeit  $p_{\rm B}$  ergibt sich für  $10 · \lg \ ξ = 6\ \rm  dB$  und  $N = N_1$   ⇒   Ergebnis der Teilaufgabe  '''(1)'''?
 
|type="{}"}
 
|type="{}"}
 
$p_{\rm B} \ = \ $ { 2.5 3% } $\ \%$
 
$p_{\rm B} \ = \ $ { 2.5 3% } $\ \%$

Revision as of 12:39, 1 April 2020

Störabstand von PCM 30/32 im Vergleich zur ZSB–Amplitudenmodulation

Die Grafik zeigt den Sinken–Störabstand  $10 · \lg \ ρ_v$  für die Pulscodemodulation  $\rm (PCM)$  im Vergleich zur analogen Zweiseitenband–Amplitudenmodulation, abgekürzt mit  $\rm ZSB–AM$. 

Für letztere gilt  $ρ_v = ξ$, wobei die Leistungskenngröße

$$\xi = \frac{\alpha^2 \cdot P_{\rm S}}{N_0 \cdot f_{\rm N}} $$

folgende Systemparameter zusammenfasst:

  • den frequenzunabhängigen Übertragungsfaktor  $α$  des Übertragungskanals,
  • die Leistung  $P_{\rm S}$  des Sendsignals  $s(t)$, auch kurz Sendeleistung genannt,
  • die Nachrichtenfrequenz  $f_{\rm N}$  (Bandbreite) des cosinusförmigen Quellensignals  $q(t)$,
  • die Rauschleistungsdichte  $N_0$  des AWGN–Rauschens.


Für das PCM–System wurde auf der Seite  Abschätzung der SNR-Degradation durch Bitfehler  folgende Näherung für das Sinken–SNR angegeben, die auch Übertragungsfehler aufgrund des AWGN–Rauschens berücksichtigt:

$$ \rho_{\upsilon}= \frac{1}{ 2^{-2N } + 4 \cdot p_{\rm B}} \hspace{0.05cm}.$$
  • Hierbei bezeichnet  $N$  die Anzahl der Bit pro Abtastwert und  $p_{\rm B}$  die Bitfehlerwahrscheinlichkeit.
  • Da  $ξ$  bei digitaler Modulation auch als die Signalenergie pro Bit  bezogen auf die Rauschleistungsdichte $(E_{\rm B}/N_0)$ interpretiert werden kann, gilt mit dem komplementären Gaußschen Fehlersignal  ${\rm Q}(x)$  näherungsweise:
$$ p_{\rm B}= {\rm Q} \left ( \sqrt{2 \xi }\right ) \hspace{0.05cm}.$$





Hinweise:


Fragebogen

1

Wieviele Bit pro Abtastwert   ⇒   $N = N_1$  verwendet das betrachtete PCM–System?

$N_1 \ = \ $

2

Wieviele Bit pro Abtastwert   ⇒   $N = N_2$  müsste man verwenden, damit  $10 · \lg \ ρ_v > 64 \ \rm dB$  (Musikqualität) erreicht wird?

$N_2 \ = \ $

3

Welche (logarithmierte) Leistungskenngröße  $ξ_{40\ \rm dB}$  ist erforderlich, damit bei 8–Bit–PCM der Sinkenstörabstand gleich  $40\ \rm dB$  ist?

$10 · \lg \ ξ_{40\ \rm dB} \ = \ $

$\ \rm dB$

4

Um welchen Faktor könnte man bei PCM die Sendeleistung gegenüber der ZSB–AM reduzieren, um trotzdem  $10 · \lg \ ρ_v = 40\ \rm dB$  zu erreichen?

$K_\text{AM → PCM} \ = \ $

5

Welche Bitfehlerwahrscheinlichkeit  $p_{\rm B}$  ergibt sich für  $10 · \lg \ ξ = 6\ \rm dB$  und  $N = N_1$   ⇒   Ergebnis der Teilaufgabe  (1)?

$p_{\rm B} \ = \ $

$\ \%$

6

Welches SNR würde sich bei gleichem  $ξ$  mit einer 3–Bit–PCM   ⇒   $N = 3$  ergeben?

$10 · \lg \ ρ_v \ = \ $

$\ \rm dB$


Musterlösung

(1)  Der horizontale Abschnitt der PCM–Kurve wird allein durch das Quantisierungsrauschen bestimmt. Hier gilt mit der Quantisierungsstufenzahl $M = 2^N$:

$$ \rho_{v} (\xi \rightarrow \infty) = \rho_{\rm Q} = M^2 = 2^{2N} \hspace{0.3cm}\Rightarrow \hspace{0.3cm} 10 \cdot {\rm lg}\hspace{0.1cm}\rho_{v} \approx 6\,{\rm dB} \cdot N\hspace{0.05cm}.$$

Aus dem ablesbaren Störabstand $10 · \lg \ ρ_v ≈ 48 \ \rm dB$ folgt daraus $N_1\hspace{0.15cm}\underline { = 8}$ Bit pro Abtastwert und für die Quantisierungsstufenzahl $M = 256$.


(2)  Aus der obigen Näherung erhält man für $N_2\hspace{0.15cm}\underline { = 11}$ Bit pro Abtastwert   ⇒   $M = 2048$ den Störabstand $66 \ \rm dB$.

  • Mit $N = 10$   ⇒   $M = 1024$ erreicht man nur ca. $60 \ \rm dB$.
  • Bei der Compact Disc (CD) werden die PCM–Parameter $N = 16$   ⇒   $M = 65536$   ⇒   $10 · \lg \ ρ_v > 96 \ \rm dB$ verwendet.


(3)  Bei Zweiseitenband–Amplitudenmodulation wären hierfür $10 · \lg \ ξ = 40\ \rm dB$ erforderlich. Wie aus der Grafik auf der Angabenseite hervorgeht, ist dieser Abszissenwert für die vorgegebene PCM um $30 \ \rm dB$ geringer   ⇒   $10 · \lg \ ξ_{40\ \rm dB}\hspace{0.15cm}\underline { = 10 \ \rm dB}$.


(4)  Der logarithmische Wert $30 \ \rm dB$ entspricht einer um den Faktor $10^3\hspace{0.15cm}\underline { = 1000}$ reduzierten Leistung.


(5)  Aus der Grafik auf der Angabenseite erkennt man, dass der Abszissenwert $10 · \lg \ ξ= 6 \ \rm dB$ den Störabstand $20 \ \rm dB$ zur Folge hat. Aus $10 · \lg \ ρ_v = 20 \ \rm dB$ folgt $ρ_v = 100$ und damit weiter (mit $N = N_1 = 8$):

$$\rho_{\upsilon}= \frac{1}{ 2^{-2N } + 4 \cdot p_{\rm B}} \approx \frac{1}{ 1.5 \cdot 10^{-5} + 4 \cdot p_{\rm B}} = 100 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} p_{\rm B} = \frac{0.01 - 1.5 \cdot 10^{-5}}{ 4} \hspace{0.15cm}\underline {\approx 2.5\%} \hspace{0.05cm}.$$

(6)  Bei gleichem $ξ$ ist die Bitfehlerwahrscheinlichkeit weiterhin $p_{\rm B} = 0.025$. Damit erhält man mit $N = 3$ (Bit pro Abtastwert):

$$\rho_{\upsilon}= \frac{1}{ 2^{-6 } + 4 \cdot p_{\rm B}} = \frac{1}{ 0.015625 + 0.01} \approx 39 \hspace{0.3cm} \Rightarrow \hspace{0.3cm}10 \cdot {\rm lg} \hspace{0.15cm}\rho_{\upsilon}\hspace{0.15cm}\underline {\approx 15.9\,{\rm dB}} \hspace{0.05cm}.$$

Weiter ist anzumerken:

  • Bei nur drei Bit pro Abtastwert ist die Quantisierungsrauschleistung $(P_{\rm Q} = 0.015625)$ schon größer als die Fehlerrauschleistung $(P_{\rm F} = 0.01)$.
  • Durch Erhöhung der Sendeleistung könnte wegen der Quantisierung der Sinkenstörabstand maximal $10 · \lg \ ρ_v =18 \ \rm dB$ betragen, wenn keine Bitfehler vorkommen $(P_{\rm F} = 0)$.