Difference between revisions of "Aufgaben:Exercise 2.3: Yet Another Multi-Path Channel"
m (Javier verschob die Seite Exercises:Exercise 2.3: Yet Another Multi-Path Channel nach Exercise 2.3: Yet Another Multi-Path Channel) |
|||
Line 3: | Line 3: | ||
[[File:P_ID2160__Mob_A_2_3.png|right|frame|Vorgegebene Rechteckantwort]] | [[File:P_ID2160__Mob_A_2_3.png|right|frame|Vorgegebene Rechteckantwort]] | ||
− | + | We consider a multipath channel, which is characterized by the following impulse response: | |
− | + | $$h(\tau, \hspace{0.05cm} t) = h(\tau) = \sum_{m = 1}^{M} k_m \cdot \delta( \tau - \tau_m) | |
\hspace{0.05cm}.$$ | \hspace{0.05cm}.$$ | ||
− | + | All coefficients $k_{m}$ be real (positive or negative). Furthermore, it should be noted | |
− | * | + | * From the specification $h(\tau, \hspace{0.05cm}t) = h(\tau)$ you can see that the channel is time invariant. |
− | * | + | * Generally, the channel $M$ has paths. The $M$–value should be determined from the graphic. |
− | * | + | * The following relations apply to the delay times: $\tau_1 < \tau_2 < \tau_3 < \ \ text{...}$ |
− | + | The diagram shows the output signal $r(\tau)$ of the channel when the following transmit signal is present at the input (shown in the equivalent low-pass range): | |
− | + | $$s(\tau) = \left\{ \begin{array}{c} s_0\\\ | |
− | 0 | + | 0 \end{array} \right.\quad |
− | \begin{array}{*{1}c} 0 \le \tau < 5\,{\rm µ s} | + | \begin{\array}{*{*1}c} 0 \le \tau < 5\, {\rm µ s} |
− | \\ | + | \\ {\arm else}. \\ \end{array}$$ |
− | + | The corresponding impulse response $h(\tau)$ as well as the transfer function $H(f)$ is searched for. | |
Line 26: | Line 26: | ||
− | '' | + | ''Notes:'' |
− | * | + | * This task refers to the chapter [[Mobile_Kommunikation/Mehrwegeempfang_beim_Mobilfunk| Mehrwegeempfang beim Mobilfunk]]. |
− | * | + | * For the solution of the subtask '''(1)'' assume that the impulse response $h(\tau)$ extends over 5 microseconds. |
− | === | + | ===Questionnaire=== |
<quiz display=simple> | <quiz display=simple> | ||
− | { | + | {What is the impulse response $h(\tau)$? How many paths $(M)$ are there here? |
|type="{}"} | |type="{}"} | ||
$M \ = \ ${ 3 } | $M \ = \ ${ 3 } | ||
− | + | Specify the first three delay times $\tau_m$ . | |
|type="{}"} | |type="{}"} | ||
− | $\ | + | $\ dew_1 \ = \ ${ 0. } $\ \ \rm µ s$ |
− | $\tau_2 \ = \ ${ 2 3% } $\ \rm µ s$ | + | $\tau_2 \ = \ ${ 2 3% } $\ \ \rm µ s$ |
− | $\tau_3 \ = \ ${ 10 3% } $\ \rm µ s$ | + | $\tau_3 \ = \ ${ 10 3% } $\ \ \rm µ s$ |
− | { | + | {What are the weights of the first three Diraculsions? |
|type="{}"} | |type="{}"} | ||
$k_1 \ = \ ${ 0.75 3% } | $k_1 \ = \ ${ 0.75 3% } | ||
Line 51: | Line 51: | ||
$k_3 \ = \ ${ 0.25 3% } | $k_3 \ = \ ${ 0.25 3% } | ||
− | { | + | {Calculate the frequency response $H(f)$ What is the frequency period $f_0$? <br><i>Note:</i> With integer $i$ must $H(f + i \cdot f_0) = H(f)$ apply. |
|type="{}"} | |type="{}"} | ||
− | $f_0 \ = \ ${ 500 3% } $\ \rm kHz$ | + | $f_0 \ = \ ${ 500 3% } $\ \ \rm kHz$ |
− | { | + | {Calculate the magnitude frequency response Which values result for the frequencies $f = 0$, $f = 250 \ \rm kHz$ and $f = 500 \ \rm kHz$? |
|type="{}"} | |type="{}"} | ||
$|H(f = 0)| \ = \ ${ 0.5 3% } | $|H(f = 0)| \ = \ ${ 0.5 3% } | ||
Line 61: | Line 61: | ||
$|H(f = 500 \ \rm kHz)| \ = \ ${ 0.5 3% } | $|H(f = 500 \ \rm kHz)| \ = \ ${ 0.5 3% } | ||
− | { | + | {What is the worst value $({\rm worst \ case})$ for $k_3$ regarding the frequency $f = 250 \ \rm kHz$? |
|type="{}"} | |type="{}"} | ||
$k_3 \ = \ ${ 1.25 3% } | $k_3 \ = \ ${ 1.25 3% } | ||
</quiz> | </quiz> | ||
− | === | + | ===Sample solution=== |
{{ML-Kopf}} | {{ML-Kopf}} | ||
− | '''(1)''' | + | '''(1)''' Here $r(\tau) = s(\tau) ∗ h(\tau)$ is valid, where $s(\tau)$ denotes a rectangular pulse of duration $T = 5 \ \ \rm µ s$ and the impulse response $h(\tau)$ is generally made up of $M$ weighted Dirac functions at $\tau_1, \tau_2, \ \ \ \ text{...} \ , \tau_M$ |
− | + | The sketched output signal $r(\tau)$ can only result if | |
− | * $\tau_1 = 0$ | + | * $\tau_1 = 0$ (otherwise $r(\tau)$ would not start at $\tau = 0$), |
− | * $\tau_M = 10 \ \rm µ s$ | + | * $\tau_M = 10 \ \ \rm µ s$ is (this results in the rectangular course between $10 \ \ \rm µ s$ and $15 \ \ \rm µ s$), |
− | * | + | * in between another Dirac function at $\tau_2 = 2 \ \ \rm µ s$ occurs. |
− | + | That means: The impulse response here consists of $\underline {M = 3}$ Dirac functions. | |
− | '''(2)''' | + | '''(2)''' As already calculated in the first subtask, one gets |
:$$\tau_1 \hspace{0.1cm} \underline {= 0}\hspace{0.05cm},\hspace{0.2cm}\tau_2 \hspace{0.1cm} \underline {= 2\,{\rm µ s}}\hspace{0.05cm},\hspace{0.2cm}\tau_3 \hspace{0.1cm} \underline {= 10\,{\rm µ s}}\hspace{0.05cm}.$$ | :$$\tau_1 \hspace{0.1cm} \underline {= 0}\hspace{0.05cm},\hspace{0.2cm}\tau_2 \hspace{0.1cm} \underline {= 2\,{\rm µ s}}\hspace{0.05cm},\hspace{0.2cm}\tau_3 \hspace{0.1cm} \underline {= 10\,{\rm µ s}}\hspace{0.05cm}.$$ | ||
− | '''(3)''' | + | '''(3)''' If you compare input $s(\tau)$ and output $r(\tau)$, you will get the following results: |
− | * | + | * Interval $0 < \tau < 2 \ {\rm µ s} \text \ \, s(\tau) = s_0, \hspace{1cm} r(\tau) = 0.75 \cdot s_0 \,\,\Rightarrow\,\, k_1 \ \underline {= 0.75}$, |
− | * | + | * Interval $2 \ {\rm µ s} < \tau < 5 \ {\rm µ s} \text \ \, \hspace{2.4cm} r(\tau) =(k_1 + k_2) \cdot s_0 = 0.25 \cdot s_0 \Rightarrow k_2 \ \underline {= \, –0.50}$, |
− | * | + | * interval $10 \ {\rm µ s} < \tau < 15 \ {\rm µ s} \text \ \,\hspace{\a6}{\a6} r(\tau} =k_3 \cdot s_0 = 0.25 \cdot s_0 \,\Rightarrow\, k_3 \ \underline {= 0.25}$. |
− | + | '''(4)''' With the displacement theorem one obtains for the Fourier transform of the impulse response $h(\tau)$: | |
− | + | $$h(\tau) = k_1 \cdot \delta( \tau) + k_2 \cdot \delta( \tau - \tau_2)+ k_3 \cdot \delta( \tau - \tau_3) \hspace{0.3cm} | |
− | '''(4)''' | + | \Rightarrow \hspace{0.3cm}H(f) = k_1 + k_2 \cdot {\rm e}^{- {\rm j}\cdot 2 \pi f \tau_2}+ k_3 \cdot {\rm e}^{- {\rm j}\cdot 2 \pi f \tau_3} |
− | |||
− | \Rightarrow \hspace{0.3cm}H(f) = k_1 + k_2 \cdot {\rm e}^{- {\rm j}\cdot 2 \pi f \tau_2}+ | ||
\hspace{0.05cm}. $$ | \hspace{0.05cm}. $$ | ||
− | + | Analysis of the individual contributions leads to the following conclusion: | |
− | * | + | * The first share is constant ⇒ period $f_1 → ∞$. |
− | * | + | * The second share is periodic with $f_2 = 1/\tau_2 = 500 \ \rm kHz$. |
− | * | + | * The third portion is periodic with $f_3 = 1/\thaw_3 = 100 \ \rm kHz$. |
− | ⇒ | + | ⇒ In total, $H(f)$ is thus periodic with $f_0 \ \underline {= 500 \ \ \rm kHz}$. |
− | '''(5)''' | + | '''(5)''' With $A = 2\pi f \cdot \tau_2$ and $B = 2\pi f \cdot \tau_3$ you get |
:$$|H(f)|^2 \hspace{-0.1cm} \ = \ \hspace{-0.1cm} H(f) \cdot H^{\star}(f)= | :$$|H(f)|^2 \hspace{-0.1cm} \ = \ \hspace{-0.1cm} H(f) \cdot H^{\star}(f)= | ||
\left [ \frac {3}{4} - \frac {1}{2} \cdot {\rm e}^{-{\rm j}A} + \frac {1}{4} \cdot {\rm e}^{-{\rm j}B}\right ] | \left [ \frac {3}{4} - \frac {1}{2} \cdot {\rm e}^{-{\rm j}A} + \frac {1}{4} \cdot {\rm e}^{-{\rm j}B}\right ] | ||
− | \left [ \frac {3}{4} - \frac {1}{2} \cdot {\rm e}^{{\rm j}A} + \frac {1}{4} \cdot {\rm e}^{{\rm j}B}\right ] | + | \left [ \frac {3}{4} - \frac {1}{2} \cdot {\rm e}^{{{\rm j}A} + \frac {1}{4} \cdot {\rm e}^{{\rm j}B}\right ]$ |
− | + | $$\Rightarrow \hspace{0.3cm} |H(f)|^2 \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \frac {9}{16}- \frac {3 {\rm e}^{{\rm j}A}}{8} +\frac {3{\rm e}^{{\rm j}B}}{16} | |
− | - \frac {3{\rm e}^{-{\rm j}A}}{8} | + | - \frac {3{\rm e}^{-{\rm j}A}}{8} +\frac {1}{4}- \frac {{\rm e}^{{\rm j}(B-A)}}{8} +\frac {3{\rm e}^{-{\rm j}B}{16} |
− | - \frac {{\rm e}^{{\rm j}(A-B)}}{8} +\frac{1}{16 }=$$ | + | - \frac {{{\rm e}^{{{\rm j}(A-B)}}{8} +\frac{1}{16 }=$$ |
− | :$$\hspace{2.1cm} \ = \ \hspace{-0.1cm}\frac {7}{8 }- \frac {3}{8} \cdot \left [ | + | :$$\hspace{2.1cm} \ = \ \hspace{-0.1cm}\frac {7}{8}- \frac {3}{8} \cdot \left [ {\rm e}^{{\rm j}A} + {\rm e}^{-{\rm j}A}\right ] |
− | \frac {3}{16} \cdot \left [ | + | \frac {3}{16} \cdot \left [ {\rm e}^{{\rm j}B} + {\rm e}^{-{\rm j}B}\right ]- \frac {1}{8} \cdot \left [ {\rm e}^{{{\rm j}(B-A)} + {\rm e}^{-{\rm j}(B-A)}\right ]\hspace{0.05cm}.$ |
− | + | This results in the [[Signal representation/For_calculation_with_complex_numbers#Depiction_by_amount_and_phase|set by Euler]] with consideration of the frequency periodicity: | |
:$$|H(f)|= \sqrt{\frac {7}{8 }- \frac {3}{4} \cdot \cos( 2 \pi f \tau_2) + | :$$|H(f)|= \sqrt{\frac {7}{8 }- \frac {3}{4} \cdot \cos( 2 \pi f \tau_2) + | ||
\frac {3}{8} \cdot \cos( 2 \pi f \tau_3)- \frac {1}{4} \cdot \cos( 2 \pi f (\tau_3 - \tau_2))}$$ | \frac {3}{8} \cdot \cos( 2 \pi f \tau_3)- \frac {1}{4} \cdot \cos( 2 \pi f (\tau_3 - \tau_2))}$$ | ||
− | + | $$\Rightarrow \hspace{0.3cm} |H(f = 0)|\hspace{-0.1cm} \ = \ \hspace{-0.1cm} \sqrt{\frac {7}{8}- \frac {3}{4} + | |
\frac {3}{8} - \frac {1}{4} } = \sqrt{0.25}\hspace{0.1cm} \underline {= 0.5} = |H(f = 500\,{\rm kHz})|$$ | \frac {3}{8} - \frac {1}{4} } = \sqrt{0.25}\hspace{0.1cm} \underline {= 0.5} = |H(f = 500\,{\rm kHz})|$$ | ||
− | :$$|H(f = 250\,{\rm kHz})|\hspace{-0.1cm} \ = \ \hspace{-0.1cm} \sqrt{\frac {7}{8 }- \frac {3}{4} \cdot \cos( | + | :$$|H(f = 250\,{\rm kHz})|\hspace{-0.1cm} \ = \ \hspace{-0.1cm} \sqrt{\frac }{7}{8}- \frac {3}{4} \cdot \cos( \pi ) + |
\frac {3}{8} \cdot \cos( 5 \pi )- \frac {1}{4} \cdot \cos( 4 \pi )} \hspace{0.1cm} \underline {= 1}\hspace{0.05cm}.$$ | \frac {3}{8} \cdot \cos( 5 \pi )- \frac {1}{4} \cdot \cos( 4 \pi )} \hspace{0.1cm} \underline {= 1}\hspace{0.05cm}.$$ | ||
− | '''(6)''' | + | '''(6)''' The frequency response just calculated for the frequency $f = 250 \ \rm kHz$ can be displayed as follows: |
− | [[File:P_ID2162__Mob_A_2_3e.png|right|frame| | + | [[File:P_ID2162__Mob_A_2_3e.png|right|frame|Amplitude frequency response for three-way channel]] |
− | + | $$H(f = 250\,{\rm kHz})= k_1 + k_2 \cdot {\rm e}^{-{\rm j}\cdot \pi}+ k_3 \cdot {\rm e}^{-{\rm j}\cdot 5\pi} = k_1 - k_2 - k_3 | |
\hspace{0.05cm}.$$ | \hspace{0.05cm}.$$ | ||
− | + | If you now dial | |
− | :$$k_3 = | + | :$$k_3 = k_1 - k_2 = 0.75 + 0.50\hspace{0.1cm} \underline {= 1.25}\hspace{0.05cm},$$ |
− | + | the result is $|H(f = 250 \ \rm kHz)| = 0$ and thus the most unfavorable value for this signal frequency. | |
− | + | The graph shows $|H(f)|$ in the range between $0$ and $500 \ \rm kHz$: | |
− | * | + | *The blue curve applies to $k_3 = 0.25$ according to the specifications of subtask '''(4)''. |
− | * | + | *The red curve is valid for $k_3 = 1.25$, the most unfavourable value for $f = 250 \ \rm kHz$. |
{{ML-Fuß}} | {{ML-Fuß}} | ||
− | |||
[[Category:Exercises for Mobile Communications|^2.2 Multi-Path Reception in Wireless Systems^]] | [[Category:Exercises for Mobile Communications|^2.2 Multi-Path Reception in Wireless Systems^]] |
Revision as of 14:32, 15 April 2020
We consider a multipath channel, which is characterized by the following impulse response: $$h(\tau, \hspace{0.05cm} t) = h(\tau) = \sum_{m = 1}^{M} k_m \cdot \delta( \tau - \tau_m) \hspace{0.05cm}.$$
All coefficients $k_{m}$ be real (positive or negative). Furthermore, it should be noted
- From the specification $h(\tau, \hspace{0.05cm}t) = h(\tau)$ you can see that the channel is time invariant.
- Generally, the channel $M$ has paths. The $M$–value should be determined from the graphic.
- The following relations apply to the delay times: $\tau_1 < \tau_2 < \tau_3 < \ \ text{...}$
The diagram shows the output signal $r(\tau)$ of the channel when the following transmit signal is present at the input (shown in the equivalent low-pass range):
$$s(\tau) = \left\{ \begin{array}{c} s_0\\\
0 \end{array} \right.\quad
\begin{\array}{*{*1}c} 0 \le \tau < 5\, {\rm µ s}
\\ {\arm else}. \\ \end{array}$$
The corresponding impulse response $h(\tau)$ as well as the transfer function $H(f)$ is searched for.
Notes:
- This task refers to the chapter Mehrwegeempfang beim Mobilfunk.
- For the solution of the subtask '(1) assume that the impulse response $h(\tau)$ extends over 5 microseconds.
Questionnaire
Sample solution
The sketched output signal $r(\tau)$ can only result if
- $\tau_1 = 0$ (otherwise $r(\tau)$ would not start at $\tau = 0$),
- $\tau_M = 10 \ \ \rm µ s$ is (this results in the rectangular course between $10 \ \ \rm µ s$ and $15 \ \ \rm µ s$),
- in between another Dirac function at $\tau_2 = 2 \ \ \rm µ s$ occurs.
That means: The impulse response here consists of $\underline {M = 3}$ Dirac functions.
(2) As already calculated in the first subtask, one gets
- $$\tau_1 \hspace{0.1cm} \underline {= 0}\hspace{0.05cm},\hspace{0.2cm}\tau_2 \hspace{0.1cm} \underline {= 2\,{\rm µ s}}\hspace{0.05cm},\hspace{0.2cm}\tau_3 \hspace{0.1cm} \underline {= 10\,{\rm µ s}}\hspace{0.05cm}.$$
(3) If you compare input $s(\tau)$ and output $r(\tau)$, you will get the following results:
- Interval $0 < \tau < 2 \ {\rm µ s} \text \ \, s(\tau) = s_0, \hspace{1cm} r(\tau) = 0.75 \cdot s_0 \,\,\Rightarrow\,\, k_1 \ \underline {= 0.75}$,
- Interval $2 \ {\rm µ s} < \tau < 5 \ {\rm µ s} \text \ \, \hspace{2.4cm} r(\tau) =(k_1 + k_2) \cdot s_0 = 0.25 \cdot s_0 \Rightarrow k_2 \ \underline {= \, –0.50}$,
- interval $10 \ {\rm µ s} < \tau < 15 \ {\rm µ s} \text \ \,\hspace{\a6}{\a6} r(\tau} =k_3 \cdot s_0 = 0.25 \cdot s_0 \,\Rightarrow\, k_3 \ \underline {= 0.25}$.
(4) With the displacement theorem one obtains for the Fourier transform of the impulse response $h(\tau)$: $$h(\tau) = k_1 \cdot \delta( \tau) + k_2 \cdot \delta( \tau - \tau_2)+ k_3 \cdot \delta( \tau - \tau_3) \hspace{0.3cm} \Rightarrow \hspace{0.3cm}H(f) = k_1 + k_2 \cdot {\rm e}^{- {\rm j}\cdot 2 \pi f \tau_2}+ k_3 \cdot {\rm e}^{- {\rm j}\cdot 2 \pi f \tau_3} \hspace{0.05cm}. $$
Analysis of the individual contributions leads to the following conclusion:
- The first share is constant ⇒ period $f_1 → ∞$.
- The second share is periodic with $f_2 = 1/\tau_2 = 500 \ \rm kHz$.
- The third portion is periodic with $f_3 = 1/\thaw_3 = 100 \ \rm kHz$.
⇒ In total, $H(f)$ is thus periodic with $f_0 \ \underline {= 500 \ \ \rm kHz}$.
(5) With $A = 2\pi f \cdot \tau_2$ and $B = 2\pi f \cdot \tau_3$ you get
- $$|H(f)|^2 \hspace{-0.1cm} \ = \ \hspace{-0.1cm} H(f) \cdot H^{\star}(f)= \left [ \frac {3}{4} - \frac {1}{2} \cdot {\rm e}^{-{\rm j}A} + \frac {1}{4} \cdot {\rm e}^{-{\rm j}B}\right ] \left [ \frac {3}{4} - \frac {1}{2} \cdot {\rm e}^{{{\rm j}A} + \frac {1}{4} \cdot {\rm e}^{{\rm j}B}\right ]$ $$\Rightarrow \hspace{0.3cm} |H(f)|^2 \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \frac {9}{16}- \frac {3 {\rm e}^{{\rm j}A}}{8} +\frac {3{\rm e}^{{\rm j}B}}{16}
- \frac {3{\rm e}^{-{\rm j}A}}{8} +\frac {1}{4}- \frac {{\rm e}^{{\rm j}(B-A)}}{8} +\frac {3{\rm e}^{-{\rm j}B}{16} - \frac {{{\rm e}^{{{\rm j}(A-B)}}{8} +\frac{1}{16 }=$$ :$$\hspace{2.1cm} \ = \ \hspace{-0.1cm}\frac {7}{8}- \frac {3}{8} \cdot \left [ {\rm e}^{{\rm j}A} + {\rm e}^{-{\rm j}A}\right ]
\frac {3}{16} \cdot \left [ {\rm e}^{{\rm j}B} + {\rm e}^{-{\rm j}B}\right ]- \frac {1}{8} \cdot \left [ {\rm e}^{{{\rm j}(B-A)} + {\rm e}^{-{\rm j}(B-A)}\right ]\hspace{0.05cm}.$ This results in the [[Signal representation/For_calculation_with_complex_numbers#Depiction_by_amount_and_phase|set by Euler]] with consideration of the frequency periodicity: :'"`UNIQ-MathJax36-QINU`"' '"`UNIQ-MathJax37-QINU`"' :'"`UNIQ-MathJax38-QINU`"' '''(6)''' The frequency response just calculated for the frequency $f = 250 \ \rm kHz$ can be displayed as follows: [[File:P_ID2162__Mob_A_2_3e.png|right|frame|Amplitude frequency response for three-way channel]] '"`UNIQ-MathJax39-QINU`"' If you now dial :'"`UNIQ-MathJax40-QINU`"' the result is $|H(f = 250 \ \rm kHz)| = 0$ and thus the most unfavorable value for this signal frequency. The graph shows $|H(f)|$ in the range between $0$ and $500 \ \rm kHz$: *The blue curve applies to $k_3 = 0.25$ according to the specifications of subtask '''(4)''. *The red curve is valid for $k_3 = 1.25$, the most unfavourable value for $f = 250 \ \rm kHz$.