Difference between revisions of "Aufgaben:Exercise 5.4Z: OVSF Codes"
Line 9: | Line 9: | ||
− | Ein Beispiel hierfür sind die so genannten [[Modulationsverfahren/Spreizfolgen_für_CDMA#Codes_mit_variablem_Spreizfaktor_.28OVSF.E2.80.93Code.29|Codes mit variablem Spreizfaktor]] (englisch: ''Orthogonal Variable Spreading'' Factor, OVSF), die Spreizcodes der Längen von $J = 4$ bis $J = 512$ bereitstellen. | + | Ein Beispiel hierfür sind die so genannten [[Modulationsverfahren/Spreizfolgen_für_CDMA#Codes_mit_variablem_Spreizfaktor_.28OVSF.E2.80.93Code.29|Codes mit variablem Spreizfaktor]] $($englisch: ''Orthogonal Variable Spreading'' Factor, $\rm OVSF)$, die Spreizcodes der Längen von $J = 4$ bis $J = 512$ bereitstellen. |
− | Diese können, wie in der Grafik zu sehen ist, mit Hilfe eines Codebaums erstellt werden. Dabei entstehen bei jeder Verzweigung aus einem Code $C$ zwei neue Codes $+C \ +C$ und $+C \ -C$. | + | Diese können, wie in der Grafik zu sehen ist, mit Hilfe eines Codebaums erstellt werden. Dabei entstehen bei jeder Verzweigung aus einem Code $C$ zwei neue Codes $+C \ +C$ und $+C \ -C$. |
− | Die Grafik verdeutlicht das hier angegebene Prinzip am Beispiel $J = 4$ | + | Die Grafik verdeutlicht das hier angegebene Prinzip am Beispiel $J = 4$: |
+ | *Nummeriert man die Spreizfolgen von $0$ bis $J -1$ durch, so ergeben sich hier die Spreizfolgen | ||
:$$\langle c_\nu^{(0)}\rangle = {+\hspace{-0.05cm}1}\hspace{0.15cm} {+\hspace{-0.05cm}1} \hspace{0.15cm} {+\hspace{-0.05cm}1}\hspace{0.15cm} {+\hspace{-0.05cm}1} \hspace{0.05cm},\hspace{0.3cm} \langle c_\nu^{(1)}\rangle = {+\hspace{-0.05cm}1}\hspace{0.15cm} {+\hspace{-0.05cm}1} \hspace{0.15cm} {-\hspace{-0.05cm}1}\hspace{0.15cm} {-\hspace{-0.05cm}1} \hspace{0.05cm},$$ | :$$\langle c_\nu^{(0)}\rangle = {+\hspace{-0.05cm}1}\hspace{0.15cm} {+\hspace{-0.05cm}1} \hspace{0.15cm} {+\hspace{-0.05cm}1}\hspace{0.15cm} {+\hspace{-0.05cm}1} \hspace{0.05cm},\hspace{0.3cm} \langle c_\nu^{(1)}\rangle = {+\hspace{-0.05cm}1}\hspace{0.15cm} {+\hspace{-0.05cm}1} \hspace{0.15cm} {-\hspace{-0.05cm}1}\hspace{0.15cm} {-\hspace{-0.05cm}1} \hspace{0.05cm},$$ | ||
:$$\langle c_\nu^{(2)}\rangle = {+\hspace{-0.05cm}1}\hspace{0.15cm} {-\hspace{-0.05cm}1} \hspace{0.15cm} {+\hspace{-0.05cm}1}\hspace{0.15cm} {-\hspace{-0.05cm}1} \hspace{0.05cm},\hspace{0.3cm} \langle c_\nu^{(3)}\rangle = {+\hspace{-0.05cm}1}\hspace{0.15cm} {-\hspace{-0.05cm}1} \hspace{0.15cm} {-\hspace{-0.05cm}1}\hspace{0.15cm} {+\hspace{-0.05cm}1} \hspace{0.05cm}.$$ | :$$\langle c_\nu^{(2)}\rangle = {+\hspace{-0.05cm}1}\hspace{0.15cm} {-\hspace{-0.05cm}1} \hspace{0.15cm} {+\hspace{-0.05cm}1}\hspace{0.15cm} {-\hspace{-0.05cm}1} \hspace{0.05cm},\hspace{0.3cm} \langle c_\nu^{(3)}\rangle = {+\hspace{-0.05cm}1}\hspace{0.15cm} {-\hspace{-0.05cm}1} \hspace{0.15cm} {-\hspace{-0.05cm}1}\hspace{0.15cm} {+\hspace{-0.05cm}1} \hspace{0.05cm}.$$ | ||
− | Entsprechend dieser Nomenklatur gibt es für den Spreizfaktor $J = 8$ die Spreizfolgen $\langle c_\nu^{(0)}\rangle $, ... , $\langle c_\nu^{(7)}\rangle $. | + | *Entsprechend dieser Nomenklatur gibt es für den Spreizfaktor $J = 8$ die Spreizfolgen $\langle c_\nu^{(0)}\rangle $, ... , $\langle c_\nu^{(7)}\rangle $. |
*Anzumerken ist, dass kein Vorgänger und Nachfolger eines Codes für einen anderen Teilnehmer benutzt werden darf. | *Anzumerken ist, dass kein Vorgänger und Nachfolger eines Codes für einen anderen Teilnehmer benutzt werden darf. | ||
*Im Beispiel könnten also vier Spreizcodes mit Spreizfaktor $J = 4$ verwendet werden oder die drei gelb hinterlegten Codes – einmal mit $J = 2$ und zweimal mit $J = 4$. | *Im Beispiel könnten also vier Spreizcodes mit Spreizfaktor $J = 4$ verwendet werden oder die drei gelb hinterlegten Codes – einmal mit $J = 2$ und zweimal mit $J = 4$. | ||
+ | |||
+ | |||
+ | |||
Line 36: | Line 40: | ||
<quiz display=simple> | <quiz display=simple> | ||
− | {Konstruieren Sie das Baumdiagramm für $J = 8$. Welche OVSF–Codes ergeben sich daraus? | + | {Konstruieren Sie das Baumdiagramm für $J = 8$. Welche OVSF–Codes ergeben sich daraus? |
|type="[]"} | |type="[]"} | ||
+ '''Codewort 1:''' $ \langle c_\nu^{(1)}\rangle = {+\hspace{-0.05cm}1}\hspace{0.15cm} {+\hspace{-0.05cm}1} \hspace{0.15cm} {+\hspace{-0.05cm}1}\hspace{0.15cm} {+\hspace{-0.05cm}1} \hspace{0.15cm}{-\hspace{-0.05cm}1}\hspace{0.15cm} {-\hspace{-0.05cm}1} \hspace{0.15cm}{-\hspace{-0.05cm}1}\hspace{0.15cm} {-\hspace{-0.05cm}1} \hspace{0.05cm},$ | + '''Codewort 1:''' $ \langle c_\nu^{(1)}\rangle = {+\hspace{-0.05cm}1}\hspace{0.15cm} {+\hspace{-0.05cm}1} \hspace{0.15cm} {+\hspace{-0.05cm}1}\hspace{0.15cm} {+\hspace{-0.05cm}1} \hspace{0.15cm}{-\hspace{-0.05cm}1}\hspace{0.15cm} {-\hspace{-0.05cm}1} \hspace{0.15cm}{-\hspace{-0.05cm}1}\hspace{0.15cm} {-\hspace{-0.05cm}1} \hspace{0.05cm},$ | ||
Line 52: | Line 56: | ||
$K \ = \ $ { 5 } | $K \ = \ $ { 5 } | ||
− | {Gehen Sie von einer Baumstruktur für $J = 32$ aus. Ist die folgende Zuweisung machbar: <br>Zweimal $J = 4$, einmal $J = 8$, zweimal $J = 16$ und achtmal $J = 32$? | + | {Gehen Sie von einer Baumstruktur für $J = 32$ aus. Ist die folgende Zuweisung machbar: <br>Zweimal $J = 4$, einmal $J = 8$, zweimal $J = 16$ und achtmal $J = 32$? |
|type="()"} | |type="()"} | ||
+ Ja. | + Ja. |
Revision as of 17:03, 30 April 2020
Die Spreizcodes für UMTS sollen
- alle zueinander orthogonal sein, um eine gegenseitige Beeinflussung der Teilnehmer zu vermeiden,
- zusätzlich eine flexible Realisierung unterschiedlicher Spreizfaktoren $J$ ermöglichen.
Ein Beispiel hierfür sind die so genannten Codes mit variablem Spreizfaktor $($englisch: Orthogonal Variable Spreading Factor, $\rm OVSF)$, die Spreizcodes der Längen von $J = 4$ bis $J = 512$ bereitstellen.
Diese können, wie in der Grafik zu sehen ist, mit Hilfe eines Codebaums erstellt werden. Dabei entstehen bei jeder Verzweigung aus einem Code $C$ zwei neue Codes $+C \ +C$ und $+C \ -C$.
Die Grafik verdeutlicht das hier angegebene Prinzip am Beispiel $J = 4$:
- Nummeriert man die Spreizfolgen von $0$ bis $J -1$ durch, so ergeben sich hier die Spreizfolgen
- $$\langle c_\nu^{(0)}\rangle = {+\hspace{-0.05cm}1}\hspace{0.15cm} {+\hspace{-0.05cm}1} \hspace{0.15cm} {+\hspace{-0.05cm}1}\hspace{0.15cm} {+\hspace{-0.05cm}1} \hspace{0.05cm},\hspace{0.3cm} \langle c_\nu^{(1)}\rangle = {+\hspace{-0.05cm}1}\hspace{0.15cm} {+\hspace{-0.05cm}1} \hspace{0.15cm} {-\hspace{-0.05cm}1}\hspace{0.15cm} {-\hspace{-0.05cm}1} \hspace{0.05cm},$$
- $$\langle c_\nu^{(2)}\rangle = {+\hspace{-0.05cm}1}\hspace{0.15cm} {-\hspace{-0.05cm}1} \hspace{0.15cm} {+\hspace{-0.05cm}1}\hspace{0.15cm} {-\hspace{-0.05cm}1} \hspace{0.05cm},\hspace{0.3cm} \langle c_\nu^{(3)}\rangle = {+\hspace{-0.05cm}1}\hspace{0.15cm} {-\hspace{-0.05cm}1} \hspace{0.15cm} {-\hspace{-0.05cm}1}\hspace{0.15cm} {+\hspace{-0.05cm}1} \hspace{0.05cm}.$$
- Entsprechend dieser Nomenklatur gibt es für den Spreizfaktor $J = 8$ die Spreizfolgen $\langle c_\nu^{(0)}\rangle $, ... , $\langle c_\nu^{(7)}\rangle $.
- Anzumerken ist, dass kein Vorgänger und Nachfolger eines Codes für einen anderen Teilnehmer benutzt werden darf.
- Im Beispiel könnten also vier Spreizcodes mit Spreizfaktor $J = 4$ verwendet werden oder die drei gelb hinterlegten Codes – einmal mit $J = 2$ und zweimal mit $J = 4$.
Hinweise:
- Die Aufgabe gehört zum Kapitel Spreizfolgen für CDMA.
- Bezug genommen wird insbesondere auf den Abschnitt Codes mit variablem Spreizfaktor im Theorieteil.
- Wir möchten Sie gerne auch auf das Interaktionsmodul OVSF hinweisen.
Fragebogen
Musterlösung
(1) Die Grafik zeigt die OVSF–Baumstruktur für $J = 8$ Nutzer. Daraus ist ersichtlich, dass die Lösungsvorschläge 1, 3 und 4 zutreffen, nicht jedoch der zweite.
(2) Wird jedem Nutzer ein Spreizcode mit $J = 8$ zugewiesen, so können $K_{\rm max}\hspace{0.15cm}\underline{ = 8}$ Teilnehmer versorgt werden.
(3) Wenn drei Teilnehmer mit $J = 4$ versorgt werden, können nur mehr zwei Teilnehmer durch eine Spreizfolge mit $J = 8$ bedient werden (siehe beispielhafte gelbe Hinterlegung in obiger Grafik) ⇒ $K\hspace{0.15cm}\underline{ = 5}$.
(4) Wir bezeichnen mit
- $K_4 = 2$ die Anzahl der Spreizfolgen mit $J = 4$,
- $K_8 = 1$ die Anzahl der Spreizfolgen mit $J = 8$,
- $K_{16} = 2$ die Anzahl der Spreizfolgen mit $J = 16$,
- $K_{32} = 8$ die Anzahl der Spreizfolgen mit $J = 32$.
Dann muss folgende Bedingung erfüllt sein:
- $$K_4 \cdot \frac{32}{4} + K_8 \cdot \frac{32}{8} +K_{16} \cdot \frac{32}{16} +K_{32} \cdot \frac{32}{32} \le 32 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} K_4 \cdot8 + K_8 \cdot 4 +K_{16} \cdot 2 +K_{32} \cdot1 \le 32 \hspace{0.05cm}.$$
- Wegen $2 · 8 + 1 · 4 + 2 · 2 + 8 = 32$ ist die gewünschte Belegung gerade noch erlaubt ⇒ Antwort JA.
- Die zweimalige Bereitstellung des Spreizgrads $J = 4$ blockiert zum Beispiel die obere Hälfte des Baums.
- Nach der Versorgung der einen Spreizung mit $J = 8$, bleiben auf der $J = 8$–Ebene noch drei der acht Äste zu belegen, usw. und so fort.