Difference between revisions of "Aufgaben:Exercise 1.3: Rectangular Functions for Transmitter and Receiver"
m (Text replacement - "Komplementäre_Gaußsche_Fehlerfunktionen_(neues_Applet)" to "Komplementäre_Gaußsche_Fehlerfunktionen") |
|||
Line 19: | Line 19: | ||
*Die Aufgabe gehört zum Kapitel [[Digitalsignalübertragung/Fehlerwahrscheinlichkeit_bei_Basisbandübertragung| Fehlerwahrscheinlichkeit bei Basisbandübertragung]]. | *Die Aufgabe gehört zum Kapitel [[Digitalsignalübertragung/Fehlerwahrscheinlichkeit_bei_Basisbandübertragung| Fehlerwahrscheinlichkeit bei Basisbandübertragung]]. | ||
− | *Zur Bestimmung von Fehlerwahrscheinlichkeiten können Sie das interaktive Applet [[Applets: | + | *Zur Bestimmung von Fehlerwahrscheinlichkeiten können Sie das interaktive Applet [[Applets:Komplementäre_Gaußsche_Fehlerfunktionen|Komplementäre Gaußsche Fehlerfunktionen]] verwenden. |
*Berücksichtigen Sie bei der Berechnung der Detektionsstörleistung das [[Stochastische_Signaltheorie/Leistungsdichtespektrum_(LDS)#Theorem_von_Wiener-Chintchine|Theorem von Wiener–Chintchine]]: | *Berücksichtigen Sie bei der Berechnung der Detektionsstörleistung das [[Stochastische_Signaltheorie/Leistungsdichtespektrum_(LDS)#Theorem_von_Wiener-Chintchine|Theorem von Wiener–Chintchine]]: | ||
:$$ \sigma _d ^2 = \frac{N_0 }{2} \cdot \int_{ - \infty }^{ | :$$ \sigma _d ^2 = \frac{N_0 }{2} \cdot \int_{ - \infty }^{ |
Revision as of 17:56, 10 June 2020
Wir betrachten hier drei Varianten eines binären bipolaren AWGN–Übertragungssystems, die sich hinsichtlich des Sendegrundimpulses gs(t) sowie der Impulsantwort hE(t) des Empfangsfilters unterscheiden:
- Beim System A sind sowohl gs(t) als auch hE(t) rechteckförmig, lediglich die Impulshöhen (s0 bzw. 1/T) sind unterschiedlich.
- Das System B unterscheidet sich vom System A durch einen dreieckförmigen Sendegrundimpuls mit gs(t=0)=s0.
- Das System C hat den gleichen Sendegrundimpuls wie System A, während die Impulsantwort mit hE(t=0)=1/T dreieckförmig verläuft.
Die absolute Breite der hier betrachteten Rechteck– und Dreieckfunktionen beträgt jeweils T = 10 \ \rm µ s. Die Bitrate ist R = 100 \ \rm kbit/s. Die weiteren Systemparameter sind wie folgt gegeben:
- s_0 = 6 \,\,\sqrt{W}\hspace{0.05cm},\hspace{0.3cm} N_{\rm 0} = 2 \cdot 10^{-5} \,\,{\rm W/Hz}\hspace{0.05cm}.
Hinweise:
- Die Aufgabe gehört zum Kapitel Fehlerwahrscheinlichkeit bei Basisbandübertragung.
- Zur Bestimmung von Fehlerwahrscheinlichkeiten können Sie das interaktive Applet Komplementäre Gaußsche Fehlerfunktionen verwenden.
- Berücksichtigen Sie bei der Berechnung der Detektionsstörleistung das Theorem von Wiener–Chintchine:
- \sigma _d ^2 = \frac{N_0 }{2} \cdot \int_{ - \infty }^{ + \infty } {\left| {H_{\rm E}( f )} \right|^2 \hspace{0.1cm}{\rm{d}}f} = \frac{N_0 }{2} \cdot \int_{ - \infty }^{ + \infty } {\left| {h_{\rm E}( t )} \right|^2 \hspace{0.1cm}{\rm{d}}t}\hspace{0.05cm}.
Fragebogen
Musterlösung
- g_d (t = 0) = \int_{ - T/2}^{ + T/2} { g_s(t) \cdot h_{\rm E}( t )} \hspace{0.1cm}{\rm{d}}t =s_0 \cdot \frac{1 }{T} \cdot T = s_0 \hspace{0.1cm}\underline { = 6 \,\,\sqrt{{\rm W}}}\hspace{0.05cm}.
Es gibt keine Impulsinterferenzen, da für | t |\ge T der Detektionsimpuls g_{d}(t) = 0 ist.
2. Die Varianz des Detektionsstörsignals – hier als Detektionsstörleistung bezeichnet – kann sowohl im Zeit– als auch im Frequenzbereich berechnet werden.
- Bei der vorliegenden Rechteckform führt die Berechnung im Zeitbereich schneller zum Ergebnis:
- \sigma _d ^2 \ = \ \frac{N_0 }{2} \cdot \int_{ - \infty }^{ + \infty } {\left| {h_{\rm E}( t )} \right|^2 \hspace{0.1cm}{\rm{d}}t} =\frac{N_0 }{2} \cdot \int_{ - T/2 }^{ + T/2 } {\left| {h_{\rm E}( t )} \right|^2 \hspace{0.1cm}{\rm{d}}t} = \ \frac{N_0 }{2} \cdot\frac{1 }{T^2} \cdot T = \frac{N_0 }{2T} = \frac{2 \cdot 10^{-5} \,\,{\rm W/Hz}}{2 \cdot 10^{-5} \,\,{\rm s}} \hspace{0.1cm}\underline {= 1\,{\rm W}}\hspace{0.05cm}.
- Die Frequenzbereichsberechnung würde mit H_{\rm E}(f) = {\rm si}(πfT) wie folgt aussehen:
- \sigma _d ^2 = \frac{N_0 }{2} \cdot \int_{ - \infty }^{ + \infty } {\left| {H_{\rm E}( f )} \right|^2 \hspace{0.1cm}{\rm{d}}f} = \frac{N_0 }{2} \cdot \int_{- \infty }^{ \infty } {\rm si}^2(\pi f T)\hspace{0.1cm}{\rm{d}}f = \frac{N_0 }{2T} \hspace{0.05cm}.
3. Aufgrund der zeitlich begrenzten Impulsform (das bedeutet: keine Impulsinterferenzen!) ergibt sich bei der hier vorausgesetzten bipolaren Betrachtungsweise:
- p_{\rm B} = {\rm Q} \left( \frac{s_0}{\sigma_d}\right)= {\rm Q} \left( \frac{ 6 \,\sqrt{\rm W}}{1 \,\sqrt{\rm W}}\right) = {\rm Q}(6) \hspace{0.1cm}\underline {= 0.987 \cdot 10^{-9}} \hspace{0.05cm}.
System A stellt die Matched–Filter–Realisierung des optimalen Binärempfängers dar, so dass auch folgende Gleichungen anwendbar wären:
- E_{\rm B} = s_0^2 \cdot T = 36\, {\rm W} \cdot 10^{-5} {\rm s}\hspace{0.3cm} \Rightarrow \hspace{0.3cm} p_{\rm B} = {\rm Q} \left( \sqrt{\frac{2 \cdot E_{\rm B}}{N_0}}\right) ={\rm Q} \left( \sqrt{\frac{2 \cdot 36 \cdot 10^{-5}\,\, {\rm Ws}}{2 \cdot 10^{-5} \,\, {\rm Ws}}}\right)={\rm Q}(6) \hspace{0.05cm}.
4. Da bei System B das gleiche Empfangsfilter wie bei System A verwendet wird, erhält man auch die gleiche Detektionsstörleistung σ_{d}^2 = 1 \ \rm W.
- Der Detektionsgrundimpuls ist nun aber nicht mehr dreieckförmig, sondern weist eine spitzere Form auf. Zum Zeitpunkt t = 0 gilt:
- g_d (t = 0) = \frac{1}{T} \cdot \int_{ - T/2}^{ + T/2} { g_s(t) } \hspace{0.1cm}{\rm{d}}t = \frac{1}{T} \cdot \frac{s_0 }{2} \cdot T = \frac{s_0 }{2}\hspace{0.1cm}\underline {= 3 \,\,\sqrt{\rm W}}\hspace{0.05cm}.
- Auch das System B ist impulsinterferenzfrei. Man erhält deshalb für die Bitfehlerwahrscheinlichkeit:
- p_{\rm B} = {\rm Q} \left( \frac{g_d (t = 0)}{\sigma_d}\right)= {\rm Q} \left( \frac{ 3 \,\sqrt{\rm W}}{1 \,\sqrt{\rm W}}\right) = {\rm Q}(3) \hspace{0.1cm}\underline {= 0.135 \cdot 10^{-2}} \hspace{0.05cm}.
- Nicht anwendbar ist dagegen hier der folgende Rechengang:
- E_{\rm B} = \int^{+\infty} _{-\infty} g_s^2(t)\,{\rm d}t = 2\cdot s_0^2 \cdot \int ^{+T/2} _{0} \left( 1- \frac{2t}{T}\right)^2\,{\rm d}t = \frac{s_0^2 \cdot T }{3} = 12 \cdot 10^{-5} \,{\rm Ws}
- \Rightarrow \hspace{0.3cm} p_{\rm B} = {\rm Q} \left( \sqrt{\frac{2 \cdot E_{\rm B}}{N_0}}\right) ={\rm Q} \left( \sqrt{12}\right)={\rm Q}(3.464) \approx 3 \cdot 10^{-4} \hspace{0.05cm}.
- Man würde so eine zu niedrige Bitfehlerwahrscheinlichkeit berechnen, da die implizit getroffene Annahme eines angepassten Filters nicht zutrifft.
5. Bei rechteckförmigem Sendegrundimpuls und dreieckförmiger Impulsantwort ⇒ System C erhält man den gleichen Detektionsgrundimpuls wie bei dreieckförmigem g_{\rm s}(t) und rechteckförmigem h_{\rm E}(t).
- Wie beim System B gilt deshalb:
- g_d (t = 0) = \frac{s_0}{2}\hspace{0.1cm}\underline {= 3 \,\,\sqrt{\rm W}}\hspace{0.05cm}.
- Dagegen ist nun die Detektionsstörleistung kleiner als bei den Systemen A und B:
- \sigma _d ^2 = \frac{N_0}{2} \cdot \frac{1}{T^2} \cdot \int^{+T/2} _{-T/2} \left( 1- \frac{2t}{T}\right)^2\,{\rm d}t = \frac{N_0}{6T}\hspace{0.1cm}\underline { = 0.333 \,{\rm W}}.
- Damit erhält man nun für die Bitfehlerwahrscheinlichkeit:
- p_{\rm B} = {\rm Q} \left( \frac{ 3 \,\sqrt{\rm W}}{0.577 \,\sqrt{\rm W}}\right) \approx {\rm Q}(5.2)\hspace{0.1cm}\underline { \approx 10^{-7} } \hspace{0.05cm}.
- Der gegenüber Teilfrage (3) erkennbare Anstieg der Fehlerwahrscheinlichkeit um etwa den Faktor 100 ist auf die gravierende Fehlanpassung gegenüber dem Matched–Filter zurückzuführen.
- Die Verbesserung gegenüber Teilaufgabe (4) geht auf die höhere Signalenergie zurück.