Difference between revisions of "Aufgaben:Exercise 3.2: GSM Data Rates"

From LNTwww
m
Line 1: Line 1:
 
+
{{{quiz-Header|Book page=Mobile communications/Communities of GSM and UMTS
{{quiz-Header|Buchseite=Mobile Kommunikation/Gemeinsamkeiten von GSM und UMTS
 
  
 
}}
 
}}
  
 
[[File:EN_Mob_A_3_2.png|right|frame|Block diagram of GSM]]
 
[[File:EN_Mob_A_3_2.png|right|frame|Block diagram of GSM]]
In dieser !! Aufgabe wird die Datenübertragung bei GSM betrachtet. Da dieses System jedoch vorwiegend für die Sprachübertragung spezifiziert wurde, benutzen wir bei den folgenden Rechnungen meist die Dauer  $T_{\rm R} = 20 \ \rm ms$  eines Sprachrahmens als zeitliche Bezugsgröße. Die Eingangsdatenrate beträgt  $R_{1} = 9.6 \ \rm kbit/s$. Die Anzahl der Eingangsbit in jedem $T_{\rm R}$–Rahmen sei  $N_{1}$. Alle in der Grafik mit „???” beschrifteten Kenngrößen sollen in der Aufgabe berechnet werden.
+
In this task, the data transmission with GSM is considered. However, since this system was mainly specified for voice transmission, we usually use the duration  $T_{\rm R} = 20 \ \rm ms$  of a voice frame as a temporal reference in the following calculations. The input data rate is  $R_{1} = 9.6 \ \rm kbit/s$. The number of input bits in each $T_{\rm R}$ frame is  $N_{1}$. All parameters labelled "???" in the graphic should be calculated in the task.
 +
 
 +
 
 +
 
 +
The first blocks you will see in the transmission chain shown:
 +
*the outer coder (block code including four tail bits) with  $N_{2} = 244 \ \rm Bit$  per frame  $(T_{\rm R} = 20 \ \ \ \rm ms)$   ⇒   Rate  $R_{2}$  is to be determined,
 +
*the convolutional coder with the code rate  $1/2$, and subsequent puncturing $($waiver of  $N_{\rm P} \ \rm bit)$    ⇒   Rate $R_{3} = 22.8 \ \rm kbit/s$,
 +
*Interleaving and encryption, both rate-neutral At the output of this block the rate  $R_4$  occurs.
 +
 
  
Als erste Blöcke erkennt man in der dargestellten Übertragungskette:
 
*den äußeren Coder (Blockcode inklusive vier Tailbits) mit  $N_{2} = 244 \ \rm Bit$  pro Rahmen  $(T_{\rm R} = 20 \ \rm ms)$    ⇒    Rate  $R_{2}$  ist zu ermitteln,
 
*den Faltungscoder mit der Coderate  $1/2$, und anschließender Punktierung $($Verzicht auf  $N_{\rm P} \ \rm Bit)$     ⇒    Rate $R_{3} = 22.8 \ \rm kbit/s$,
 
*Interleaving und Verschlüsselung, beides ratenneutral. Am Ausgang dieses Blockes tritt die Rate  $R_4$  auf.
 
  
  
Die weitere Signalverarbeitung sieht prinzipiell wie folgt aus:
+
The further signal processing is basically as follows:
*Jeweils  $114$  (codierte, verwürfelte, verschlüsselte) Datenbits werden zusammen mit  $34$  Kontrollbits (für Trainingsfolge, Tailbits, Guard Period) und einer Pause $($Dauer:   $8.25 \ \rm Bit)$  zu einem so genannten  ''Normal \ Burst''  zusammengefasst. Die Rate am Ausgang wird mit  $R_{5}$  bezeichnet.
+
*Each  $114$  (coded, scrambled, encrypted) data bits are combined together with  $34$  control bits (for training sequence, tail bits, guard period) and a pause $($Duration:   $8.25 \ \ \rm Bit)$  to a so called  ''Normal \ Burst'' . The rate at the output is called  $R_{5}$ .
*Zusätzlich werden weitere Bursts (''Frequency Correction Burst, Synchronisation Burst, Dummy Burst, Access Bursts'') zur Signalisierung hinzugefügt. Die Rate nach diesem Block ist  $R_{6}$.
+
*Additionally, further bursts (''Frequency Correction Burst, Synchronisation Burst, Dummy Burst, Access Bursts'') are added for signalling. The rate after this block is  $R_{6}$.
*Schließlich folgt noch die TDMA–Multiplexeinrichtung, so dass die Gesamtbruttodatenrate des GSM gleich  $R_{\rm ges} = R_{7}$  beträgt.
+
*Finally the TDMA multiplexing equipment follows, so that the total gross data rate of the GSM is  $R_{\rm ges} = R_{7}$ .
  
  
Als bekannt vorausgesetzt wird die Gesamtbruttodatenrate  $R_{\rm ges} = 270.833 \ \rm kbit/s$  (bei acht Nutzern).
+
The total gross data rate  $R_{\rm ges} = 270,833 \ \rm kbit/s$  (for eight users) is assumed to be known.
  
  
Line 26: Line 29:
  
  
''Hinweise:''
+
''Notes:''
  
*Die Aufgabe gehört zum Kapitel  [[Mobile_Kommunikation/Gemeinsamkeiten_von_GSM_und_UMTS|Gemeinsamkeiten von GSM und
+
*The task belongs to the chapter  [[Mobile_Kommunikation/Gemeinsamkeiten_von_GSM_und_UMTS|Gemeinsamkeiten von GSM und
 
  UMTS]].  
 
  UMTS]].  
*Obige Grafik fasst die vorliegende Beschreibung zusammen und definiert die verwendeten Datenraten.  
+
*The graphic above summarizes the present description and defines the data rates used.  
*Alle Raten sind in $ \rm kbit/s$” angegeben.
+
*All rates are given in "$ \rm kbit/s$".
*$N_{1},  N_{2},  N_{3}$  und  $N_{4}$  bezeichnen die jeweilige Bitanzahl an den entsprechenden Punkten des obigen Blockschaltbildes innerhalb eines Zeitrahmens der Dauer  $T_{\rm R} = 20 \ \rm ms$.
+
*$N_{1},  N_{2},  N_{3}$  and  $N_{4}$  denote the respective number of bits at the corresponding points of the above block diagram within a time frame of duration  $T_{\rm R} = 20 \ \rm ms$.
*$N_{\rm ges} = 156.25$  ist die Bitanzahl nach Burst–Bildung, bezogen auf die Dauer  $T_{\rm Z}$  eines TDMA–Zeitschlitzes. Davon sind  $N_{\rm Info} = 114$  Informationsbits inklusive Kanalcodierung.
+
*$N_{\rm ges} = 156.25$  is the number of bits after burst formation, related to the duration  $T_{\rm Z}$  of a TDMA time slot. Of which  $N_{\rm Info} = 114$  are information bits including channel coding.
 +
 
 +
 
 +
 
  
  
  
===Fragebogen===
+
===Questionnaire==
  
 
<quiz display=simple>
 
<quiz display=simple>
  
{Wie viele Bit werden von der Quelle in jedem Rahmen bereitgestellt?
+
{How many bits are provided by the source in each frame?
 
|type="{}"}
 
|type="{}"}
$N_{1} \ = \ $ { 192 3% } $\ \rm Bit$
+
$N_{1} \ = \ $ { 192 3% } $\ \ \rm Bit$
  
  
{Wie groß ist die Datenrate nach dem äußeren Coder?
+
{What is the data rate after the outer coder?
 
|type="{}"}
 
|type="{}"}
$R_{2} \ = \ $ { 12.2 3% } $\ \rm kbit/s$
+
$R_{2} \ = \ $ { 12.2 3% } $\ \ \rm kbit/s$
  
  
{Wie viele Bit würde der Faltungscoder allein (ohne Punktierung) abgeben?
+
{How many bits would the convolutional coder deliver alone (without dotting)?
 
|type="{}"}
 
|type="{}"}
$N_{3}\hspace{0.01cm}' \ = \ $ { 488 3% } $\ \rm Bit$
+
$N_{3}\hspace{0.01cm}' \ = \ $ { 488 3% } $\ \ \rm Bit$
  
  
{Wie viele Bit gibt der punktierte Faltungscoder tatsächlich ab?
+
{How many bits does the dotted convolutional coder actually emit?
 
|type="{}"}
 
|type="{}"}
$N_{3} \ = \ $ { 456 3% } $\ \rm Bit$
+
$N_{3} \ = \ $ { 456 3% } $\ \ \rm Bit$
  
  
{Wie groß ist die Datenrate nach Interleaver und Verschlüsselung?
+
{What is the data rate after Interleaver and encryption?
 
|type="{}"}
 
|type="{}"}
$R_{4} \ = \ $ { 22.8 3% } $\ \rm kbit/s$
+
$R_{4} \ = \ $ { 22.8 3% } $\ \ \rm kbit/s$
  
  
{Wie lange dauert ein Zeitschlitz (''Time–Slot'')?
+
{How long does a time slot last?
 
|type="{}"}
 
|type="{}"}
$T_{\rm Z} \ = \ $ { 576.9 3% } $\ \rm &micro; s$
+
$T_{\rm Z} \ = \ $ { 576.9 3% } $\ \ \rm &micro; s$
  
  
{Wie groß ist die Bruttodatenrate für jeden einzelnen TDMA–Nutzer?
+
{What is the gross data rate for each individual TDMA user?
 
|type="{}"}
 
|type="{}"}
$R_{6} \ = \ $ { 33.854 3% } $\ \rm kbit/s$
+
$R_{6} \ = \ $ { 33,854 3% } $\ \ \rm kbit/s$
  
{Welche Bruttodatenrate ergäbe sich ohne Signalisierungsbits?
+
{What gross data rate would be without signaling bits?
 
|type="{}"}
 
|type="{}"}
$R_{5} \ = \ $ { 31.25 3% } $\ \rm kbit/s$
+
$R_{5} \ = \ $ { 31.25 3% } $\ \ \rm kbit/s$
  
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
=== sample solution===
{{ML-Kopf}}
+
{{{ML Kopf}
  
'''(1)'''&nbsp; Es gilt $N_{1} = R_{1} \cdot T_{\rm R} = 9.6 {\ \rm kbit/s} \cdot 20 {\ \rm ms} \hspace{0.15cm} \underline{= 192 \ \rm Bit}$.
+
'''(1)'''&nbsp; The following applies $N_{1} = R_{1} \cdot T_{\rm R} = 9.6 {\ \rm kbit/s} \cdot 20 {\ \rm ms} \hspace{0.15cm} \underline{\ 192 \rm bit}$.
  
  
'''(2)'''&nbsp; Analog zur Teilaufgabe '''(1)''' gilt:
+
'''(2)'''&nbsp; Analogous to the subtask '''(1)'' applies:
:$$R_2= \frac{N_2}{T_{\rm R}} = \frac{244\,{\rm Bit}}{20\,{\rm ms}}\hspace{0.15cm} \underline { = 12.2\,{\rm kbit/s}}\hspace{0.05cm}.$$
+
$$R_2= \frac{N_2}{T_{\rm R}}} = \frac{244\,{\rm bit}}{20\,{\rm ms}}\hspace{0.15cm} \underline { = 12.2\,{\rm kbit/s}}\hspace{0.05cm}.$$
Beachten Sie bitte: &nbsp; Bei einer redundanzfreien Binärquelle (aber nur bei dieser) besteht kein Unterschied zwischen „$\rm Bit$” und „$\rm bit$.
+
Please note: &nbsp; For a redundancy-free binary source (but only this one), there is no difference between "$\rm bit$" and "$\rm bit$".
  
  
'''(3)'''&nbsp; Der Faltungscoder der Rate $1/2$ allein würde aus seinen $N_{2} = 244$ Eingangsbits genau $N_{3}\hspace{0.01cm}' \hspace{0.15cm}\underline{= 488}$ Ausgangsbits pro Rahmen generieren.
+
'''(3)'''&nbsp; The convolutional encoder of rate $1/2$ alone would generate exactly $N_{3}\hspace{0.01cm}' from its $N_{2} = 244$ input bits. \hspace{0.15cm}\underline{= 488}$ generate output bits per frame.
  
  
'''(4)'''&nbsp; Aus der angegebenen Datenrate $R_{3} = 22.8 \ \rm kbit/s$ folgt dagegen $N_{3} \hspace{0.15cm}\underline{= 456}$.  
+
'''(4)'''&nbsp; Contrary, $N_{3} follows from the specified data rate $R_{3} = 22.8 \ \rm kbit/s$ \hspace\underline $456.  
*Das bedeutet, dass von den $N_{3}' = 488 \ \rm Bit$ durch die Punktierung $N_{\rm P} = 32 \ \rm Bit$ entfernt werden.
+
*This means that from $N_{3}' = 488 \ \ \rm Bit$ are removed by the dotting $N_{\rm P} = 32 \ \ \rm Bit$.
  
  
'''(5)'''&nbsp; Sowohl das Interleaving als auch die Verschlüsselung erfolgt sozusagen „datenneutral”. Damit gilt:  
+
'''(5)'''&nbsp; Both the interleaving and the encryption are "data neutral" so to speak. Thus the following applies:  
:$$R_{4} = R_{3} \hspace{0.15cm}\underline{= 22.8 \ {\rm kbit/s}} \Rightarrow  N_{4} = N_{3} = 456.$$
+
:$$R_{4} = R_{3} \hspace{0.15cm}\underline{= 22.8 \ {\rm kbit/s}}  
  
  
'''(6)'''&nbsp; Für die Bitdauer gilt $T_{\rm B} = 1/R_{7} = 1/(0.270833 {\ \rm Mbit/s}) \approx 3.69 \ \rm &micro; s$.  
+
'''(6)'''&nbsp; The bit duration is $T_{\rm B} = 1/R_{7} = 1/(0.270833 {\ \ \rm Mbit/s}) \approx 3.69 \ \rm &micro; s$.  
*In jedem Zeitschlitz der Dauer $T_{\rm Z}$ wird ein Burst – bestehend aus $156.25 \ \rm Bit$ – übertragen.  
+
*A burst - consisting of $156.25 \ \ \rm Bit$ - is transmitted in each time slot of duration $T_{\rm Z}$.  
*Daraus ergibt sich $T_{\rm Z} \hspace{0.15cm}\underline{= 576.9 \ \rm &micro; s}$.
+
*This results in $T_{\rm Z} \hspace{0.15cm}\underline{= 576.9 \ \rm &micro; s}$.
  
  
'''(7)'''&nbsp; Bei GSM gibt es acht Zeitschlitze, wobei jedem Nutzer periodisch ein Zeitschlitz zugewiesen wird.  
+
'''(7)'''&nbsp; GSM has eight time slots, with one time slot being periodically assigned to each user.  
*Damit beträgt die Bruttodatenrate für jeden Nutzer $R_{6} = R_{7}/8 \hspace{0.15cm}\underline{ \approx 33.854 \ \rm kbit/s}$.
+
*The gross data rate for each user is $R_{6} = R_{7}/8 \hspace{0.15cm}\underline{ \approx 33.854 \ \rm kbit/s}$.
  
  
'''(8)'''&nbsp; Berücksichtigt man, dass beim ''Normal Burst'' der Anteil der Nutzdaten (inkl. Kanalcodierung) $114/156.25$ beträgt, so wäre die Rate ohne Berücksichtigung der zugefügten Signalisierungsbits:
+
'''(8)'''&nbsp; Considering that for the ''Normal Burst'' the amount of user data (including channel coding) is $114/156.25$, the rate would be without consideration of the added signaling bits:
:$$R_5 = \frac{n_{\rm ges} }{n_{\rm Info} } \cdot R_4 = \frac{156.25 }{114} \cdot 22.8\,{\rm kbit/s}\hspace{0.15cm} \underline { = 31.250\,{\rm kbit/s}}\hspace{0.05cm}.$$
+
:$$R_5 = \frac{n_{\rm ges} }{\rm Info} \cdot R_4 = \frac{156.25}{114} \cdot 22.8\,{\rm kbit/s}\hspace{0.15cm} \underline { = 31,250\,{\rm kbit/s}}\hspace{0.05cm}.$$
*Zum gleichen Ergebnis kommt man, wenn man berücksichtigt, dass bei GSM jeder 13. Rahmen für ''Common Control'' (Signalisierungs–Info) reserviert ist:
+
*The same result can be obtained if you consider that in GSM every 13th frame is reserved for ''Common Control'' (signalling info):
:$$R_5 = \frac{12 }{13 } \cdot 33.854\,{\rm kbit/s} ={ 31.250\,{\rm kbit/s}}\hspace{0.05cm}.$$
+
:$$R_5 = \frac{12}{13} \cdot 33,854\,{\rm kbit/s} ={ 31,250\,{\rm kbit/s}}\hspace{0.05cm}.$$
*Damit beträgt der prozentuale Anteil der Signalisierungsbits:
+
*Consequently , the percentage of signaling bits is:
:$$\alpha_{\rm SB} = \frac{33.854 - 31.250}{33.854 } { \approx 7.7\%}\hspace{0.05cm}.$$
+
$$\alpha_{\rm SB} = \frac{33.854 - 31.250}{33.854} { \approx 7.7\%}\hspace{0.05cm}.$$
  
 
{{ML-Fuß}}
 
{{ML-Fuß}}
Line 123: Line 129:
  
  
[[Category:Exercises for Mobile Communications|^3.2 Similarities between GSM and UMTS
+
Category:Exercises for Mobile Communications|^3.2 Similarities between GSM and UMTS
 
^]]
 
^]]

Revision as of 09:39, 25 June 2020

{

  • [[{{{Buchseite}}} | Return to book]]

Block diagram of GSM

In this task, the data transmission with GSM is considered. However, since this system was mainly specified for voice transmission, we usually use the duration  $T_{\rm R} = 20 \ \rm ms$  of a voice frame as a temporal reference in the following calculations. The input data rate is  $R_{1} = 9.6 \ \rm kbit/s$. The number of input bits in each $T_{\rm R}$ frame is  $N_{1}$. All parameters labelled "???" in the graphic should be calculated in the task.


The first blocks you will see in the transmission chain shown:

  • the outer coder (block code including four tail bits) with  $N_{2} = 244 \ \rm Bit$  per frame  $(T_{\rm R} = 20 \ \ \ \rm ms)$   ⇒   Rate  $R_{2}$  is to be determined,
  • the convolutional coder with the code rate  $1/2$, and subsequent puncturing $($waiver of  $N_{\rm P} \ \rm bit)$    ⇒   Rate $R_{3} = 22.8 \ \rm kbit/s$,
  • Interleaving and encryption, both rate-neutral At the output of this block the rate  $R_4$  occurs.



The further signal processing is basically as follows:

  • Each  $114$  (coded, scrambled, encrypted) data bits are combined together with  $34$  control bits (for training sequence, tail bits, guard period) and a pause $($Duration:   $8.25 \ \ \rm Bit)$  to a so called  Normal \ Burst . The rate at the output is called  $R_{5}$ .
  • Additionally, further bursts (Frequency Correction Burst, Synchronisation Burst, Dummy Burst, Access Bursts) are added for signalling. The rate after this block is  $R_{6}$.
  • Finally the TDMA multiplexing equipment follows, so that the total gross data rate of the GSM is  $R_{\rm ges} = R_{7}$ .


The total gross data rate  $R_{\rm ges} = 270,833 \ \rm kbit/s$  (for eight users) is assumed to be known.




Notes:

  • The task belongs to the chapter  Gemeinsamkeiten von GSM und UMTS.
  • The graphic above summarizes the present description and defines the data rates used.
  • All rates are given in "$ \rm kbit/s$".
  • $N_{1},  N_{2},  N_{3}$  and  $N_{4}$  denote the respective number of bits at the corresponding points of the above block diagram within a time frame of duration  $T_{\rm R} = 20 \ \rm ms$.
  • $N_{\rm ges} = 156.25$  is the number of bits after burst formation, related to the duration  $T_{\rm Z}$  of a TDMA time slot. Of which  $N_{\rm Info} = 114$  are information bits including channel coding.




=Questionnaire

1

How many bits are provided by the source in each frame?

$N_{1} \ = \ $

$\ \ \rm Bit$

2

What is the data rate after the outer coder?

$R_{2} \ = \ $

$\ \ \rm kbit/s$

3

How many bits would the convolutional coder deliver alone (without dotting)?

$N_{3}\hspace{0.01cm}' \ = \ $

$\ \ \rm Bit$

4

How many bits does the dotted convolutional coder actually emit?

$N_{3} \ = \ $

$\ \ \rm Bit$

5

What is the data rate after Interleaver and encryption?

$R_{4} \ = \ $

$\ \ \rm kbit/s$

6

How long does a time slot last?

$T_{\rm Z} \ = \ $

$\ \ \rm µ s$

7

What is the gross data rate for each individual TDMA user?

$R_{6} \ = \ $

$\ \ \rm kbit/s$

8

What gross data rate would be without signaling bits?

$R_{5} \ = \ $

$\ \ \rm kbit/s$


sample solution

{{{ML Kopf}

(1)  The following applies $N_{1} = R_{1} \cdot T_{\rm R} = 9.6 {\ \rm kbit/s} \cdot 20 {\ \rm ms} \hspace{0.15cm} \underline{\ 192 \rm bit}$.


'(2)  Analogous to the subtask (1) applies: $$R_2= \frac{N_2}{T_{\rm R}}} = \frac{244\,{\rm bit}}{20\,{\rm ms}}\hspace{0.15cm} \underline { = 12.2\,{\rm kbit/s}}\hspace{0.05cm}.$$ Please note:   For a redundancy-free binary source (but only this one), there is no difference between "$\rm bit$" and "$\rm bit$".


(3)  The convolutional encoder of rate $1/2$ alone would generate exactly $N_{3}\hspace{0.01cm}' from its $N_{2} = 244$ input bits. \hspace{0.15cm}\underline{= 488}$ generate output bits per frame.


(4)  Contrary, $N_{3} follows from the specified data rate $R_{3} = 22.8 \ \rm kbit/s$ \hspace\underline $456.

  • This means that from $N_{3}' = 488 \ \ \rm Bit$ are removed by the dotting $N_{\rm P} = 32 \ \ \rm Bit$.


(5)  Both the interleaving and the encryption are "data neutral" so to speak. Thus the following applies:

$$R_{4} = R_{3} \hspace{0.15cm}\underline{= 22.8 \ {\rm kbit/s}} '''(6)'''  The bit duration is $T_{\rm B} = 1/R_{7} = 1/(0.270833 {\ \ \rm Mbit/s}) \approx 3.69 \ \rm µ s$. *A burst - consisting of $156.25 \ \ \rm Bit$ - is transmitted in each time slot of duration $T_{\rm Z}$. *This results in $T_{\rm Z} \hspace{0.15cm}\underline{= 576.9 \ \rm µ s}$. '''(7)'''  GSM has eight time slots, with one time slot being periodically assigned to each user. *The gross data rate for each user is $R_{6} = R_{7}/8 \hspace{0.15cm}\underline{ \approx 33.854 \ \rm kbit/s}$. '''(8)'''  Considering that for the ''Normal Burst'' the amount of user data (including channel coding) is $114/156.25$, the rate would be without consideration of the added signaling bits: :$$R_5 = \frac{n_{\rm ges} }{\rm Info} \cdot R_4 = \frac{156.25}{114} \cdot 22.8\,{\rm kbit/s}\hspace{0.15cm} \underline { = 31,250\,{\rm kbit/s}}\hspace{0.05cm}.$$ *The same result can be obtained if you consider that in GSM every 13th frame is reserved for ''Common Control'' (signalling info): :$$R_5 = \frac{12}{13} \cdot 33,854\,{\rm kbit/s} ={ 31,250\,{\rm kbit/s}}\hspace{0.05cm}.$$ *Consequently , the percentage of signaling bits is: $$\alpha_{\rm SB} = \frac{33.854 - 31.250}{33.854} { \approx 7.7\%}\hspace{0.05cm}.$$


Category:Exercises for Mobile Communications|^3.2 Similarities between GSM and UMTS ^]]