Difference between revisions of "Aufgaben:Exercise 3.7Z: Spread Spectrum in UMTS"

From LNTwww
m (Text replacement - "[File:" to "[File:")
m (Javier moved page Exercises:Exercise 3.7Z: Spread Spectrum in UMTS to Exercise 3.7Z: Spread Spectrum in UMTS: Text replacement - "Exercises:Exercise" to "Aufgaben:Exercise")
(No difference)

Revision as of 08:42, 30 June 2020

Quellensignal und Spreizsignal

Bei UMTS/CDMA wird die so genannte PN–Modulation angewandt:

  • Das rechteckförmige Digitalsignal  $q(t)$  wird dabei mit dem Spreizsignal  $c(t)$  multipliziert und ergibt das Sendesignal  $s(t)$.
  • Dieses ist um den Spreizfaktor  $J$  höherfrequenter als  $q(t)$; man spricht von  Bandspreizung.


Beim Empfänger wird das gleiche Spreizsignal  $c(t)$  zugesetzt (und zwar phasensynchron!). Dadurch wird die Bandspreizung rückgängig gemacht   ⇒   Bandstauchung.

Die Grafik zeigt beispielhafte Signalverläufe von  $q(t)$  und  $c(t)$.



Hinweise:

  • Die Aufgabe gehört zum Kapitel  Die Charakteristika von UMTS.
  • Bezug genommen wird auch auf das Kapitel  Nachrichtentechnische Aspekte von UMTS  im Buch „Beispiele von Nachrichtensystemen”.
  • Zur Berechnung der Chipdauer  $T_{\rm C}$  wird auf die Seite  Physikalische Kanäle  verwiesen.
  • Dort findet man unter anderem die für diese Aufgabe wichtige Information, dass auf dem so genannten  Dedicated Physical Channel  (DPCH) in zehn Millisekunden genau  $15 \cdot 2560 \ \rm Chips$  übertragen werden.
  • In Teilaufgabe (5) wird nach Sendechips gefragt. Hierbei bezeichnet beispielsweise das „Sendechip”  $s_{3}$  den konstanten Signalwert von  $s(t)$  im Zeitintervall  $2T_{\rm C}$ ... $3T_{\rm C}$.



Fragebogen

1

Welche Aussagen sind richtig?

Bei UMTS ist die Bitdauer  $T_{\rm B}$  fest vorgegeben.
Bei UMTS ist die Chipdauer  $T_{\rm C}$  fest vorgegeben.
Beide Größen hängen von den Kanalbedingungen ab.

2

Geben Sie die Chipdauer  $T_{\rm C}$  und die Chiprate  $R_{\rm C}$  im Downlink an.

$R_{\rm C} \ = \ $

$\ \rm Mchip/s $
$T_{\rm C} \hspace{0.18cm} = \ $

$ \ \rm µ s $

3

Welcher Spreizfaktor ist aus der Grafik auf der Angabenseite ablesbar?

$J \ = \ $

4

Welche Bitrate ergibt sich bei diesem Spreizfaktor?

$R_{\rm B} \ = \ $

$\ \rm kbit/s $

5

Welche Werte haben die „Chips” des Sendesignals?

$s_{3} \ = \ $

$s_{4} \ = \ $

$s_{5} \ = \ $

$s_{6} \ = \ $


Musterlösung

(1)  Richtig ist der Lösungsvorschlag 2:

  • Fest vorgegeben ist bei UMTS die Chipdauer $T_{\rm C}$, die in der Teilaufgabe (2) noch berechnet werden soll.
  • Je größer der Spreizgrad $J$ ist, desto größer ist die Bitdauer.


(2)  Laut dem Hinweis auf der Angabenseite werden in $10 \ \rm ms$ genau $15 \cdot 2560 = 38400 \ \rm Chips$ übertragen.

  • Damit beträgt die Chiprate   $R_{\rm C} = 100 \cdot 38400 \ {\rm Chips/s} \ \underline{= 3.84 \ \rm Mchip/s}$.
  • Die Chipdauer ist der Kehrwert hierzu:   $T_{\rm C} \ \underline{\approx 0.26 \ \rm µ s}$.


(3)  Jedes Datenbit besteht aus vier Spreizchips   ⇒   $\underline{J = 4}$.


(4)  Die Bitrate ergibt sich mit dem Spreizfaktor $J = 4$ zu $R_{\rm B} = R_{\rm C}/J \ \underline{= 960 \ \rm kbit/s}$.

  • Mit dem für UMTS maximalen Spreizfaktor $J = 512$ beträgt die Bitrate dagegen nur $7.5 \ \rm kbit/s$.


(5)  Für das Sendesignal gilt $s(t) = q(t) \cdot c(t)$.

  • Die Chips $s_{3}$ und $s_{4}$ des Sendesignals gehören zum ersten Datenbit ($q_{1} = +1)$:
$$s_3 = c_3 \hspace{0.15cm}\underline {= -1},\hspace{0.4cm}s_4 = c_4 \hspace{0.15cm}\underline {= +1}\hspace{0.05cm}.$$
  • Dagegen sind die beiden weiteren gesuchten Sendechips dem zweiten Datenbit $(q_{2} = -1)$ zuzuordnen:
$$s_5 = -c_5= -c_1 \hspace{0.15cm}\underline {= -1},\hspace{0.4cm}s_6 = -c_6= -c_2 \hspace{0.15cm}\underline {= +1}\hspace{0.05cm}$$