Difference between revisions of "Aufgaben:Exercise 1.1: Music Signals"

From LNTwww
Line 1: Line 1:
 
{{quiz-Header|Buchseite=Signaldarstellung/Prinzip der Nachrichtenübertragung}}
 
{{quiz-Header|Buchseite=Signaldarstellung/Prinzip der Nachrichtenübertragung}}
  
[[File:P_ID339__Sig_A_1_1.png|right|frame|Music signals, original and <br> noisy and/or distorted?]]
+
[[File:P_ID339__Sig_A_1_1.png|right|frame|Music signals, original, <br> noisy and/or distorted?]]
 
On the right you see a ca.&nbsp; $\text{30 ms}$&nbsp; long section of a music signal&nbsp; <math>q(t)</math>. It is the piece &bdquo;For Elise&rdquo; by Ludwig van Beethoven.
 
On the right you see a ca.&nbsp; $\text{30 ms}$&nbsp; long section of a music signal&nbsp; <math>q(t)</math>. It is the piece &bdquo;For Elise&rdquo; by Ludwig van Beethoven.
  
Line 70: Line 70:
 
*The signal&nbsp; <math>v_1(t)</math>&nbsp; is undistorted compared to the original signal <math>q(t)</math>. The following applies: &nbsp; $v_1(t)=\alpha \cdot q(t-\tau) .$
 
*The signal&nbsp; <math>v_1(t)</math>&nbsp; is undistorted compared to the original signal <math>q(t)</math>. The following applies: &nbsp; $v_1(t)=\alpha \cdot q(t-\tau) .$
  
*Eine Dämpfung&nbsp; <math>\alpha</math>&nbsp; und eine Laufzeit&nbsp; <math>\tau</math>&nbsp; führen nicht zu Verzerrungen, sondern das Signal ist dann nur leiser und es kommt später als das Original.
+
*An attenuation&nbsp; <math>\alpha</math>&nbsp; and a delay&nbsp; <math>\tau</math>&nbsp; do not cause distortion, but the signal is then only quieter and comes later than the original.
  
  
  
'''(3)'''&nbsp; Richtig sind die <u>Lösungsvorschläge 1 und 3</u>:
+
'''(3)'''&nbsp; Correct are the <u>solutions 1 and 3</u>:
*Man erkennt sowohl im dargestellten Signalverlauf&nbsp; <math>v_2(t)</math>&nbsp; als auch im Audiosignal&nbsp; ''additives Rauschen'' &nbsp; ⇒ &nbsp;   <u>Lösungsvorschlag 3</u>.  
+
*One can recognize both in the displayed signal&nbsp; <math>v_2(t)</math>&nbsp; and in the audio signal&nbsp; ''additive noise'' &nbsp; ⇒ &nbsp; <u>solution 3</u>.  
*Der Signalrauschabstand beträgt dabei ca.&nbsp; $\text{30 dB}$; dies ist aber aus dieser Darstellung nicht erkennbar.  
+
*The signal-to-noise ratio is approx. &nbsp; $\text{30 dB}$; but this cannot be seen from this representation.  
*Richtig ist aber auch der <u>Lösungsvorschlag 1</u>: &nbsp; Ohne diesen Rauschanteil wäre&nbsp; <math>v_2(t)</math>&nbsp; identisch mit&nbsp; <math>q(t)</math>.
+
*Correct is also the <u>solution 1</u>: &nbsp; Without this noise component&nbsp; <math>v_2(t)</math>&nbsp; identical with&nbsp; <math>q(t)</math>.
  
  
'''(4)'''&nbsp;  Das Signal&nbsp; <math>v_1(t)</math>&nbsp; ist formgleich mit dem Originalsignal&nbsp; <math>q(t)</math>&nbsp; und unterscheidet sich von diesem lediglich
+
'''(4)'''&nbsp;  The signal&nbsp; <math>v_1(t)</math>&nbsp; is identical in form to the original signal&nbsp; <math>q(t)</math>&nbsp; and differs from it only
*durch den Amplitudenfaktor&nbsp; $\alpha = \underline{\text{0.3}}$&nbsp;  (dies entspricht etwa&nbsp; $\text{–10 dB)}$  
+
*by the attenuation factor&nbsp; $\alpha = \underline{\text{0.3}}$&nbsp;  (dies entspricht etwa&nbsp; $\text{–10 dB)}$  
*und die Laufzeit&nbsp;  $\tau = \underline{10\,\text{ms}}$.
+
*and the delay&nbsp;  $\tau = \underline{10\,\text{ms}}$.
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
 
__NOEDITSECTION__
 
__NOEDITSECTION__
 
[[Category:Aufgaben zu Signaldarstellung|^1. Grundbegriffe der Nachrichtentechnik^]]
 
[[Category:Aufgaben zu Signaldarstellung|^1. Grundbegriffe der Nachrichtentechnik^]]

Revision as of 13:15, 8 August 2020

Music signals, original,
noisy and/or distorted?

On the right you see a ca.  $\text{30 ms}$  long section of a music signal  \(q(t)\). It is the piece „For Elise” by Ludwig van Beethoven.

  • Underneath are drawn two sink signals  \(v_1(t)\)  and  \(v_2(t)\), which were recorded after the transmission of the music signal  \(q(t)\)  over two different channels.
  • The following controls allow you to listen to the first fourteen seconds of each of the three audio signals  \(q(t)\),  \(v_1(t)\)  and  \(v_2(t)\).


Originalsignal  \(q(t)\)

Sinkensignal  \(v_1(t)\)

Sinkensignal  \(v_2(t)\)



Notes:



Questions

1

Estimate the signal frequency of  \(q(t)\)  in the displayed section.

The signal frequency is approximately  \(f = 250\,\text{Hz}\).
The signal frequency is approximately  \(f = 500\,\text{Hz}\).
The signal frequency is about  \(f = 1\,\text{kHz}\).

2

Which statements are true for the signal  \(v_1(t)\) ?

The signal  \(v_1(t)\)  is undistorted compared to \(q(t)\).
The signal  \(v_1(t)\)  shows distortions compared to  \(q(t)\) .
The signal  \(v_1(t)\)  is noisy compared to  \(q(t)\) .

3

Which statements are true for the signal  \(v_2(t)\) ?

The signal  \(v_2(t)\)  is undistorted compared to  \(q(t)\) .
The signal  \(v_2(t)\)  shows distortions compared to  \(q(t)\) .
The signal  \(v_2(t)\)  is noisy compared to  \(q(t)\) .

4

One of the signals is opposite the original  \(q(t)\)  undistorted and not noisy.
Estimate the attenuation factor and the running time for this.

\( \alpha \ = \ \)

\( \tau \ = \ \)

$\ \text{ms}$


Solutions

(1)  Correct is the solution 2:

  • In the marked range of $20$ milliseconds approx.   $10$  oscillations can be detected.
  • From this the result  follows approximately for the signal frequency; $f = {10}/(20 \,\text{ms}) = 500 \,\text{Hz}$.


(2)  Correct is the solution 1:

  • The signal  \(v_1(t)\)  is undistorted compared to the original signal \(q(t)\). The following applies:   $v_1(t)=\alpha \cdot q(t-\tau) .$
  • An attenuation  \(\alpha\)  and a delay  \(\tau\)  do not cause distortion, but the signal is then only quieter and comes later than the original.


(3)  Correct are the solutions 1 and 3:

  • One can recognize both in the displayed signal  \(v_2(t)\)  and in the audio signal  additive noise   ⇒   solution 3.
  • The signal-to-noise ratio is approx.   $\text{30 dB}$; but this cannot be seen from this representation.
  • Correct is also the solution 1:   Without this noise component  \(v_2(t)\)  identical with  \(q(t)\).


(4)  The signal  \(v_1(t)\)  is identical in form to the original signal  \(q(t)\)  and differs from it only

  • by the attenuation factor  $\alpha = \underline{\text{0.3}}$  (dies entspricht etwa  $\text{–10 dB)}$
  • and the delay  $\tau = \underline{10\,\text{ms}}$.