Difference between revisions of "Aufgaben:Exercise 3.6Z: Complex Exponential Function"
From LNTwww
m (Text replacement - "Zum_Rechnen_mit_komplexen_Zahlen" to "Calculating_With_Complex_Numbers") |
m (Text replacement - "Signal_Representation/Gesetzmäßigkeiten_der_Fouriertransformation" to "Signal_Representation/Fourier_Transform_Laws") |
||
Line 17: | Line 17: | ||
''Hinweise:'' | ''Hinweise:'' | ||
− | *Die Aufgabe gehört zum Kapitel [[Signal_Representation/ | + | *Die Aufgabe gehört zum Kapitel [[Signal_Representation/Fourier_Transform_Laws|Gesetzmäßigkeiten der Fouriertransformation]]. |
*Alle dort dargelegten Gesetzmäßigkeiten werden im Lernvideo [[Gesetzmäßigkeiten_der_Fouriertransformation_(Lernvideo)|Gesetzmäßigkeiten der Fouriertransformation]] an Beispielen verdeutlicht. | *Alle dort dargelegten Gesetzmäßigkeiten werden im Lernvideo [[Gesetzmäßigkeiten_der_Fouriertransformation_(Lernvideo)|Gesetzmäßigkeiten der Fouriertransformation]] an Beispielen verdeutlicht. | ||
− | *Lösen Sie diese Aufgabe mit Hilfe des [[Signal_Representation/ | + | *Lösen Sie diese Aufgabe mit Hilfe des [[Signal_Representation/Fourier_Transform_Laws#Zuordnungssatz|Zuordnungssatzes]] und des [[Signal_Representation/Fourier_Transform_Laws#Verschiebungssatz|Verschiebungssatzes]]. |
*Verwenden Sie für die beiden ersten Teilaufgaben die Signalparameter A=1V und f0=125kHz. | *Verwenden Sie für die beiden ersten Teilaufgaben die Signalparameter A=1V und f0=125kHz. | ||
Revision as of 11:49, 1 September 2020
In Zusammenhang mit den Bandpass-Systemen wird oft mit einseitigen Spektren gearbeitet. In der Abbildung sehen Sie eine solche einseitige Spektralfunktion X(f), die ein komplexes Zeitsignal x(t) zur Folge hat.
In der unteren Skizze ist X(f) in einen – bezüglich der Frequenz – geraden Anteil G(f) sowie einen ungeraden Anteil U(f) aufgespaltet.
Hinweise:
- Die Aufgabe gehört zum Kapitel Gesetzmäßigkeiten der Fouriertransformation.
- Alle dort dargelegten Gesetzmäßigkeiten werden im Lernvideo Gesetzmäßigkeiten der Fouriertransformation an Beispielen verdeutlicht.
- Lösen Sie diese Aufgabe mit Hilfe des Zuordnungssatzes und des Verschiebungssatzes.
- Verwenden Sie für die beiden ersten Teilaufgaben die Signalparameter A=1V und f0=125kHz.
Fragebogen
Musterlösung
(1) G(f) ist die Spektralfunktion eines Cosinussignals mit der Periodendauer T0=1/f0=8µs:
- g(t)=A⋅cos(2πf0t).
Bei t=1µs ist der Signalwert gleich A⋅cos(π/4):
- Der Realteil ist Re[g(t=1µs)]=0.707V_,
- der Imaginärteil ist Im[g(t=1µs)]=0._
(2) Ausgehend von der Fourierkorrespondenz
- A⋅δ(f) ∘−−−∙ A
erhält man durch zweimalige Anwendung des Verschiebungssatzes (im Frequenzbereich):
- U(f)=A/2⋅δ(f−f0)−A/2⋅δ(f+f0) ∘−−−∙ u(t)=A/2⋅(ej⋅2π⋅f0⋅t−e−j⋅2π⋅f0⋅t).
- Nach dem Satz von Euler kann hierfür auch geschrieben werden:
- u(t)=j⋅A⋅sin(2πf0t).
- Der Realteil dieses Signals ist stets Null.
- Bei t=1µs gilt für den Imaginärteil: Im[g(t=1µs)]=0.707V_.
(3) Wegen X(f)=G(f)+U(f) gilt auch:
- x(t)=g(t)+u(t)=A⋅cos(2πf0t)+j⋅A⋅sin(2πf0t).
Dieses Ergebnis kann mit dem Satz von Euler wie folgt zusammengefasst werden:
- x(t)=A⋅ej⋅2π⋅f0⋅t.
Richtig sind die vorgegebenen Alternativen 1 und 3:
- Das Signal dreht in der komplexen Ebene in mathematisch positiver Richtung, also entgegen dem Uhrzeigersinn.
- Für eine Umdrehung benötigt der „Zeiger” die Periodendauer T0=1/f0=8µs.