Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

Difference between revisions of "Aufgaben:Exercise 1.7: PDF of Rice Fading"

From LNTwww
m (Text replacement - "PSD" to "PDS")
Line 30: Line 30:
 
''Notes:''
 
''Notes:''
 
* This task belongs to chapter  [[Mobile_Communications/Non-frequency_selective_fading_with_direct_component| Non-frequency selective fading with direct component]].
 
* This task belongs to chapter  [[Mobile_Communications/Non-frequency_selective_fading_with_direct_component| Non-frequency selective fading with direct component]].
* For the numerical solutions of the last subtasks, we recommend the interaction module  [[Applets:Complementary_Gaussian_Error_Functions|Complementary Gaussian Error Functions]].
+
* For the numerical solutions of the last subtasks, we recommend the applet  [[Applets:Complementary_Gaussian_Error_Functions|Complementary Gaussian Error Functions]].
 
   
 
   
  

Revision as of 17:18, 8 December 2020

Rice fading for different values of  |z0|2

As you can see in the diagram, we consider the same scenario as in  Exercise 1.6:

  • Rice fading  with variance of the Gaussian processes   σ2=1  and parameter  |z0|  for the direct path.
  • Regarding direct path, we are interested in the parameter values  |z0|2=0, 2, 4, 10, 20  (see graph).
  • The PDF of the magnitude  a(t)=|z(t)|  is
fa(a)=a/σ2e(a2+|z0|2)/(2σ2)I0[a|z0|/σ2].
  • For example, the modified zeroth order Bessel function returns the following values:
I0(2)=2.28,I0(4)=11.30,I0(3)=67.23.
  • The power (noncentral second moment) of the multiplicative factor  |z(t)| is
E[a2]=E[|z(t)|2]=2σ2+|z0|2.
  • With  z0=0,  the Rice fading  becomes Rayleigh fading, which is more critical.  In this case, the probability that  a  lies in the yellow-shaded area between  0  and  1  is
Pr(a1)=1e0.5/σ20.4.

In this task the probability  Pr(a1)  for  |z0|0  is to be approximated. There are two ways to do this, namely:

  • the triangular approximation:   Pr(a1)=1/2fa(a=1).
  • the Gaussian approximation:   If   |z0|σ, then the Rice distribution can be approximated by a Gaussian distribution with mean  |z0|  and standard deviation  σ .




Notes:



Questions

1

Calculate some PDF values for  |z0|=2  and  σ=2:

fa(a=1) = 

fa(a=2) = 

fa(a=3) = 

2

Let   |z0|=2   ⇒   |z0|2=4  (blue curve).  How big is  Pr(a1)?  Use the  triangular approximation.

Pr(a1) = 

 %

3

Let   |z0|2=2  (red curve).  How big is  Pr(a1)?  Use the  triangular approximation.

Pr(a1) = 

 %

4

Let  |z0|2=10  (green curve).  How big is  Pr(a1)?  Use the  Gaussian approximation.

Pr(a1) = 

 %

5

Let  |z0|2=20  (purple curve).  How big is  Pr(a1)?  Use the  Gaussian approximation.

Pr(a1) = 

 %


Solutions

(1)  With  |z0|=2  and  σ=2  the Rice PDF is

fa(a)=aexp[a2+42]I0(2a).
  • This gives the desired values:
fa(a=1) = 1e2.5I0(2)=0.0822.28=0.187_,
fa(a=2) = 2e4I0(4)=20.018311.3=0.414_,
fa(a=3) = 3e6.5I0(6)=30.001567.23=0.303_.
  • The results fit well with the blue curve on the graph.


(2)  With the result of the subtask  (1)   ⇒   fa(a=1)=0.187  the triangle approximation gives

Pr(a1)=1/20.18719.4%_.
  • This result will be a bit too large, because the blue curve is below the connecting line from  (0,0)  to  (1,0.187)   ⇒   convex curve.


(3)  For the red curve the PDF value  fa(a=1)0.35  can be read from the graph:

Pr(a1)=120.3517.5%_.
  • The actual probability value will be slightly larger because the red curve is concave in the range between  0  and  1.


(4)  The Gaussian approximation states that one can approximate the Rice distribution by a Gaussian distribution with mean  |z0|=10=3.16  and standard deviation  σ=1  if the quotient  |z0|/σ   is sufficiently large.  Then we have

Pr(a1)Pr(g2.16)=Q(2.16)1.5%_.
  • Here,  g  denotes a Gaussian distributed random variable with mean  0  and standard deviation  σ=1.
  • The numerical value was determined with the specified interactive applet  Complementary Gaussian Error Functions.


Note:   The Gaussian approximation is certainly associated with a certain error here:

  • From the graph you can see that the average value of the green curve is not  a=3.16,  but rather  3.31.
  • Then the power of the Gaussian approximation  (3.312+12=12)  is exactly the same as that of the Rice distribution:
|z0|2+2σ2=10+2=12.


(5)  Using the same calculation method, replace the Rice PDF with a Gaussian PDF with mean value  204.47  and standard deviation  σ=1  and you get

Pr(a1)Pr(g3.37)=Q(3.37)0.04%.
  • If one assumes the equal power Gaussian distributio n (see the note to the last subtask), the mean value is  mg=214.58,  and the probability would then be
Pr(a1)Q(3.58)0.02%_.