Difference between revisions of "Aufgaben:Exercise 2.1Z: 2D-Frequency and 2D-Time Representations"

From LNTwww
Line 2: Line 2:
 
{{quiz-Header|Buchseite=Mobile Kommunikation/Allgemeine Beschreibung zeitvarianter Systeme}}
 
{{quiz-Header|Buchseite=Mobile Kommunikation/Allgemeine Beschreibung zeitvarianter Systeme}}
  
[[File:P_ID2145__Mob_z_2_1.png|right|frame|2D transfer function:  real and imaginary parts]]
+
[[File:P_ID2145__Mob_z_2_1.png|right|frame|2D transfer function:&nbsp; <br>real and imaginary parts]]
To describe a time-variant channel with several paths, the <i>two-dimensional impulse response</i> is used
+
To describe a time-variant channel with several paths, the&nbsp; '''two-dimensional impulse response'''&nbsp; is used:
$$h(\tau,\hspace{0.05cm}t) = \sum_{m = 1}^{M} z_m(t) \cdot {\rm \delta} (\tau - \tau_m)\hspace{0.05cm}.$$
+
:$$h(\tau,\hspace{0.05cm}t) = \sum_{m = 1}^{M} z_m(t) \cdot {\rm \delta} (\tau - \tau_m)\hspace{0.05cm}.$$
  
The first parameter&nbsp; $(\tau)$&nbsp; indicates the delay, the second &nbsp;$(t)$&nbsp; is related to the time variance of the channel.  
+
The first parameter&nbsp; $(\tau)$&nbsp; indicates the delay, the second parameter&nbsp;$(t)$&nbsp; is related to the time variance of the channel.  
  
The Fourier transform of&nbsp; $h(\tau, t)$&nbsp; in $\tau$ is the <i>time-variant transfer function</i>
+
The Fourier transform of&nbsp; $h(\tau, \ t)$&nbsp; with respect to&nbsp; $\tau$&nbsp; is the &nbsp;'''time-variant transfer function''':
 
:$$H(f,\hspace{0.05cm} t)
 
:$$H(f,\hspace{0.05cm} t)
 
  \hspace{0.2cm}  \stackrel {f,\hspace{0.05cm}\tau}{\bullet\!\!-\!\!\!-\!\!\!-\!\!\circ} \hspace{0.2cm} h(\tau,\hspace{0.05cm}t)   
 
  \hspace{0.2cm}  \stackrel {f,\hspace{0.05cm}\tau}{\bullet\!\!-\!\!\!-\!\!\!-\!\!\circ} \hspace{0.2cm} h(\tau,\hspace{0.05cm}t)   
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
  
In the graph,&nbsp; $H(f, t)$&nbsp; is displayed as a function of frequency, for different values of absolute time &nbsp;$t$&nbsp; in the range of $0 \ \text{...} \ 10 \ \rm ms$.
+
*In the graph,&nbsp; $H(f, \ t)$&nbsp; is displayed as a function of frequency, for different values of absolute time &nbsp;$t$&nbsp; in the range of&nbsp; $0 \ \text{...} \ 10 \ \rm ms$.
  
In general,&nbsp; $H(f, t)$&nbsp; is complex. The real part (top) and the imaginary part (bottom) are drawn separately.
+
*In general,&nbsp; $H(f, \ t)$&nbsp; is complex.&nbsp; The real part (top) and the imaginary part (bottom) are drawn separately.
  
  
Line 25: Line 25:
 
''Notes:''
 
''Notes:''
 
* This task belongs to the chapter&nbsp; [[Mobile_Communications/General_Description_of_Time_Variant_Systems|General description of time&ndash;variant systems]].
 
* This task belongs to the chapter&nbsp; [[Mobile_Communications/General_Description_of_Time_Variant_Systems|General description of time&ndash;variant systems]].
* In the above equation, an single-path channel is represented with the parameter&nbsp; $M = 1$&nbsp;.
+
* In the above equation, an single-path channel is represented with parameter&nbsp; $M = 1$&nbsp;.
 
* Here are some numerical values of the specified time-variant transfer function:
 
* Here are some numerical values of the specified time-variant transfer function:
$$H(f,\hspace{0.05cm} t \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 0\, {\rm ms}) \approx 0.3 - {\rm j} \cdot 0.4 \hspace{0.05cm},\hspace{0.2cm}
+
:$$H(f,\hspace{0.05cm} t \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 0\, {\rm ms}) \approx 0.3 - {\rm j} \cdot 0.4 \hspace{0.05cm},\hspace{0.2cm}
 
  H(f,\hspace{0.05cm} t = 2\, {\rm ms}) \approx 0.0 - {\rm j} \cdot 1.3 \hspace{0.05cm},$$
 
  H(f,\hspace{0.05cm} t = 2\, {\rm ms}) \approx 0.0 - {\rm j} \cdot 1.3 \hspace{0.05cm},$$
$$H(f,\hspace{0.05cm} t \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 4\, {\rm ms}) \approx 0.1 - {\rm j} \cdot 1.5 \hspace{0.05cm},\hspace{0.2cm}
+
:$$H(f,\hspace{0.05cm} t \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 4\, {\rm ms}) \approx 0.1 - {\rm j} \cdot 1.5 \hspace{0.05cm},\hspace{0.2cm}
 
  H(f,\hspace{0.05cm} t = 6\, {\rm ms}) \approx 0.5 - {\rm j} \cdot 0.8 \hspace{0.05cm},$$
 
  H(f,\hspace{0.05cm} t = 6\, {\rm ms}) \approx 0.5 - {\rm j} \cdot 0.8 \hspace{0.05cm},$$
$$H(f,\hspace{0.05cm} t \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 8\, {\rm ms}) \approx 0.9 - {\rm j} \cdot 0.1 \hspace{0.05cm},\hspace{0.2cm}
+
:$$H(f,\hspace{0.05cm} t \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 8\, {\rm ms}) \approx 0.9 - {\rm j} \cdot 0.1 \hspace{0.05cm},\hspace{0.2cm}
 
  H(f,\hspace{0.05cm} t = 10\, {\rm ms}) \approx 1.4 \hspace{0.05cm}.$$
 
  H(f,\hspace{0.05cm} t = 10\, {\rm ms}) \approx 1.4 \hspace{0.05cm}.$$
  
* As can already be guessed from the above graph, neither the real nor the imaginary part of the 2D transfer function&nbsp; $H(f, t)$&nbsp; are zero-mean.
+
* As can already be guessed from the above graph, neither the real nor the imaginary part of the 2D transfer function&nbsp; $H(f, \ t)$&nbsp; are zero-mean.
  
  
Line 52: Line 52:
 
{How can the 2D impulse response be described here?
 
{How can the 2D impulse response be described here?
 
|type="[]"}
 
|type="[]"}
- $h(\tau, t) = A \cdot \delta(\tau) + B \cdot \delta(\tau \, &ndash;5 \, \rm &micro; s)$.
+
- $h(\tau, \ t) = A \cdot \delta(\tau) + B \cdot \delta(\tau \, &ndash;5 \, \rm &micro; s)$.
- $h(\tau, t) = A \cdot \delta(\tau)$.
+
- $h(\tau, \ t) = A \cdot \delta(\tau)$.
+ $h(\tau, t) = z(t) \cdot \delta(\tau)$.
+
+ $h(\tau, \ t) = z(t) \cdot \delta(\tau)$.
  
{Estimate what type of channel the data was recorded for.
+
{Estimate for which channel the data was recorded.
 
|type="()"}
 
|type="()"}
 
- AWGN channel,
 
- AWGN channel,

Revision as of 17:48, 14 December 2020

2D transfer function: 
real and imaginary parts

To describe a time-variant channel with several paths, the  two-dimensional impulse response  is used:

$$h(\tau,\hspace{0.05cm}t) = \sum_{m = 1}^{M} z_m(t) \cdot {\rm \delta} (\tau - \tau_m)\hspace{0.05cm}.$$

The first parameter  $(\tau)$  indicates the delay, the second parameter $(t)$  is related to the time variance of the channel.

The Fourier transform of  $h(\tau, \ t)$  with respect to  $\tau$  is the  time-variant transfer function:

$$H(f,\hspace{0.05cm} t) \hspace{0.2cm} \stackrel {f,\hspace{0.05cm}\tau}{\bullet\!\!-\!\!\!-\!\!\!-\!\!\circ} \hspace{0.2cm} h(\tau,\hspace{0.05cm}t) \hspace{0.05cm}.$$
  • In the graph,  $H(f, \ t)$  is displayed as a function of frequency, for different values of absolute time  $t$  in the range of  $0 \ \text{...} \ 10 \ \rm ms$.
  • In general,  $H(f, \ t)$  is complex.  The real part (top) and the imaginary part (bottom) are drawn separately.




Notes:

  • This task belongs to the chapter  General description of time–variant systems.
  • In the above equation, an single-path channel is represented with parameter  $M = 1$ .
  • Here are some numerical values of the specified time-variant transfer function:
$$H(f,\hspace{0.05cm} t \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 0\, {\rm ms}) \approx 0.3 - {\rm j} \cdot 0.4 \hspace{0.05cm},\hspace{0.2cm} H(f,\hspace{0.05cm} t = 2\, {\rm ms}) \approx 0.0 - {\rm j} \cdot 1.3 \hspace{0.05cm},$$
$$H(f,\hspace{0.05cm} t \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 4\, {\rm ms}) \approx 0.1 - {\rm j} \cdot 1.5 \hspace{0.05cm},\hspace{0.2cm} H(f,\hspace{0.05cm} t = 6\, {\rm ms}) \approx 0.5 - {\rm j} \cdot 0.8 \hspace{0.05cm},$$
$$H(f,\hspace{0.05cm} t \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 8\, {\rm ms}) \approx 0.9 - {\rm j} \cdot 0.1 \hspace{0.05cm},\hspace{0.2cm} H(f,\hspace{0.05cm} t = 10\, {\rm ms}) \approx 1.4 \hspace{0.05cm}.$$
  • As can already be guessed from the above graph, neither the real nor the imaginary part of the 2D transfer function  $H(f, \ t)$  are zero-mean.


Questionnaire

1

Is the channel time-variant?

Yes.
No.

2

Is it a multi-path channel?

Yes.
No.

3

How can the 2D impulse response be described here?

$h(\tau, \ t) = A \cdot \delta(\tau) + B \cdot \delta(\tau \, –5 \, \rm µ s)$.
$h(\tau, \ t) = A \cdot \delta(\tau)$.
$h(\tau, \ t) = z(t) \cdot \delta(\tau)$.

4

Estimate for which channel the data was recorded.

AWGN channel,
Two-way channel,
Rayleigh channel,
Rice channel.


Sample solution

(1)  As can be seen in the graph, the transfer function $H(f, t)$ is dependent on $t$. Thus $h(\tau, t)$ is also time-dependent. Correct is therefore YES.


(2)  If we look at a fixed point in time, for example $t = 2 \ \rm ms$, we obtain the following for the time-variant transfer function $$H(f,\hspace{0.05cm} t = 2\, {\rm ms}) = - {\rm j} \cdot 1.3 \hspace{0.05cm} = {\rm const.}$$

Thus the corresponding 2D–impulse response is $$h(\tau,\hspace{0.05cm} t = 2\, {\rm ms}) = - {\rm j} \cdot 1.3 \cdot \delta (\tau) \hspace{0.05cm} \hspace{0.3cm}\Rightarrow \hspace{0.3cm} M = 1 \hspace{0.05cm}.$$

There is only one path ($M=1$). This means that the correct solution is NO.


(3)  The correct solution is solution 3:

  • There is time variance but no frequency selectivity.
  • Options 1 and 2, on the other hand, describe time-invariant systems.


(4)  Solution 4 is correct:

  • For the AWGN channel, no transfer function can be specified.
  • For a two-way channel, $H(f, t)$ is not constant in $f$ for any $t$.
  • Since in the $H(f, t)$ graph the real and imaginary part have a non-zero mean, the Rayleigh–channel can also be excluded.
  • The data for the present task comes from a Rice channel with the following parameters:
$$\sigma = {1}/{\sqrt{2}} \hspace{0.05cm},\hspace{0.2cm} x_0 = {1}/{\sqrt{2}} \hspace{0.05cm},\hspace{0.2cm}y_0 = -{1}/{\sqrt{2}} \hspace{0.05cm},\hspace{0.2cm} f_{\rm D,\hspace{0.05cm} max} = 100\,\,{\rm Hz}\hspace{0.05cm}.$$