Difference between revisions of "Aufgaben:Exercise 1.2Z: Puls Code Modulation"
From LNTwww
m (Text replacement - "===Solutions===" to "===Solution===") |
|||
Line 3: | Line 3: | ||
[[File:EN_Sig_Z_1_2.png|right|frame|Components of pulse code modulation]] | [[File:EN_Sig_Z_1_2.png|right|frame|Components of pulse code modulation]] | ||
− | All modern communication systems are digital. The principle of digital transmission of speech signals goes back to [https://de.wikipedia.org/wiki/Alec_Reeves Alec Reeves] , who invented the so-called ''Pulscodemodulation'' ('''PCM''') | + | All modern communication systems are digital. The principle of digital transmission of speech signals goes back to [https://de.wikipedia.org/wiki/Alec_Reeves Alec Reeves] , who invented the so-called ''Pulscodemodulation'' ('''PCM''') as early as 1938. |
On the right you see the (simplified) block diagram of the PCM transmitter with three functional units: | On the right you see the (simplified) block diagram of the PCM transmitter with three functional units: |
Revision as of 13:25, 25 December 2020
All modern communication systems are digital. The principle of digital transmission of speech signals goes back to Alec Reeves , who invented the so-called Pulscodemodulation (PCM) as early as 1938.
On the right you see the (simplified) block diagram of the PCM transmitter with three functional units:
- The band-limited speech signal ${q(t)}$ is sampled, where the Abtasttheorem is observed, and yields the sampled signal $q_{\rm A}(t)$.
- Each sample $q_{\rm A}(t)$ is mapped to one of $M = 2^N$ and results in the quantized signal $q_{\rm Q}(t)$.
- Each individual quantized value is represented by a code sequence of $N$ binary symbols and results in the coded signal $q_{\rm C}(t)$.
In this task only the different signals of the PCM transmitter are to be classified. Later tasks will deal with other properties of pulse code modulation.
Notes: This task belongs to the chapter Klassifizierung von Signalen.
Questions
Solution
(1) Correct are the solutions 1, 2 and 4:
- The source signal ${q(t)}$ is analog, i.e. time- and value-continuous.
- Im Allgemeinen macht es keinen Sinn, ein deterministisches Signal zu übertragen.
- Für die mathematische Beschreibung eignet sich ein deterministisches Quellensignal – wie zum Beispiel ein periodisches Signal – besser als ein Zufallssignal.
- Deterministische Signale werden auch für den Testbetrieb herangezogen, um erkannte Fehlfunktionen rekonstruieren zu können.
(2) Correct are the solution suggestions 2 and 3:
- The signal $q_{\rm A}(t)$ after sampling is still value-continuous, but now time-discrete.
- The sampling frequency $f_{\rm A}$ is given by the so-called sampling theorem .
- The greater the maximum frequency $f_{\rm N,\,max}$ of the message signal, the greater must $f_{\rm A} ≥ 2 \cdot f_{\rm N,\,max}$ can be selected.
(3) Correct are the solution suggestions 1 and 3:
- The quantized signal $q_{\rm Q}(t)$ is time and value discrete, where the number of steps are $M = 2^8 = 256$
- A binary signal, on the other hand, is a discrete value signal with the number of steps $M = 2$.
(4) Correct here are the solutions 1, 3 and 5:
- The coded signal $q_{\rm C}(t)$ is binary $($level number $M = 2)$ with bit duration $T_{\rm B} = T_{\rm A}/8$.