Difference between revisions of "Signal Representation/Discrete-Time Signal Representation"

From LNTwww
Line 1: Line 1:
 
   
 
   
 
{{Header
 
{{Header
|Untermenü=Zeit- und frequenzdiskrete Signaldarstellung
+
|Untermenü=Time and Frequency-Discrete Signal Representation
|Vorherige Seite=Äquivalentes Tiefpass-Signal und zugehörige Spektralfunktion
+
|Vorherige Seite=Equivalent Low Pass Signal and Its Spectral Function
|Nächste Seite=Diskrete Fouriertransformation (DFT)
+
|Nächste Seite=Discrete Fourier Transform (DFT)
 
}}
 
}}
  
== # ÜBERBLICK ZUM FÜNFTEN HAUPTKAPITEL # ==
+
== # OVERVIEW OF THE FIFTH MAIN CHAPTER # ==
 
<br>
 
<br>
Voraussetzung für die systemtheoretische Untersuchung von Digitalsystemen oder für deren Computersimulation ist eine geeignete zeitdiskrete Signalbeschreibung. Dieses Kapitel verdeutlicht den mathematischen Übergang von zeitkontinuierlichen auf zeitdiskrete Signale, wobei von&nbsp;  [[Signal_Representation/Fourier_Transform_and_Its_Inverse|Fouriertransformation und  Fourierrücktransformation]]&nbsp; ausgegangen wird.  
+
A prerequisite for the system-theoretical investigation of digital systems or for their computer simulation is a suitable discrete-time signal description. This chapter clarifies the mathematical transition from time-continuous to time-discrete signals, starting from&nbsp;  [[Signal_Representation/Fourier_Transform_and_Its_Inverse|Fourier Transform and Its Inverse]]&nbsp;.
  
Das Kapitel beinhaltet im Einzelnen:
+
The chapter includes in detail:
*die ''Zeit- und Frequenzbereichsdarstellung''&nbsp; zeitdiskreter Signale,
+
*the ''time and frequency domain representation''&nbsp; of discrete-time signals,
*das ''Abtasttheorem'', das bei der Zeitdiskretisierung unbedingt zu beachten ist,
+
*the ''sampling theorem'', which must be strictly observed in time discretization,
*die ''Rekonstruktion des Analogsignals''&nbsp; aus der zeitdiskreten Repräsentation,
+
*the ''reconstruction of the analog signal''&nbsp; from the time-discrete representation,
*die ''Diskrete Fouriertransformation''&nbsp; (DFT) und deren Inverse (IDFT),
+
*the ''Discrete Fourier Transform''&nbsp; (DFT) and its inverse (IDFT),
*die ''Fehlermöglichkeiten''&nbsp; bei Anwendung von DFT und IDFT,
+
*the ''possibilities of error''&nbsp; when applying DFT and IDFT,
*die Anwendung der ''Spektralanalyse''&nbsp; zur Verbesserung messtechnischer Verfahren, und
+
*the application of ''spectral analysis''&nbsp; to the improvement of metrological procedures, and.
*den für eine Rechnerimplementierung besonders geeigneten ''FFT-Algorithmus''.
+
*the ''FFT algorithm'' particularly suitable for computer implementation.
  
  
  
Weitere Informationen zum Thema sowie Aufgaben, Simulationen und Programmierübungen finden Sie im
+
For more information on the subject, as well as tasks, simulations, and programming exercises, see
  
*Kapitel 7: &nbsp; &nbsp; ''Diskrete Fouriertransformation'', Programm dft,
+
*Chapter 7: &nbsp; &nbsp; ''Discrete Fourier Transform'', program dft,
*Kapitel 8: &nbsp; &nbsp; ''Spektralanalyse'', Programm stp, und
+
*Chapter 8: &nbsp; &nbsp; ''Spectral Analysis'', program stp, and
*Kapitel 12: &nbsp; ''Pulscodemodulation'', Programm pcm
+
*Chapter 12: &nbsp; ''Pulse code modulation'', program pcm
  
 +
of the laboratory course &bdquo;Simulation Methods in Communications Engineering&rdquo;. This (former) LNT course at the TU Munich is based on
 +
*the teaching software package&nbsp; [http://en.lntwww.de/downloads/Sonstiges/Programme/LNTsim.zip LNTsim] &nbsp; &rArr; &nbsp; link refers to the ZIP version of the program,
 +
*the &nbsp; [http://en.lntwww.de/downloads/Sonstiges/Texte/Praktikum_LNTsim_Teil_A.pdf Lab Instruction - Part A]  &nbsp; &rArr; &nbsp; link refers to the PDF version; Chapter 7: page 119-144, Chapter 8: page 145-164, and
 +
*the &nbsp; [http://en.lntwww.de/downloads/Sonstiges/Texte/Praktikum_LNTsim_Teil_B.pdf Lab Instruction - Part B]  &nbsp; &rArr; &nbsp; link refers to the PDF version; Chapter 12: page 271-294.
  
des Praktikums &bdquo;Simulationsmethoden in der Nachrichtentechnik&rdquo;. Diese (ehemalige) LNT-Lehrveranstaltung an der TU München basiert auf
 
*dem Lehrsoftwarepaket&nbsp; [http://en.lntwww.de/downloads/Sonstiges/Programme/LNTsim.zip LNTsim] &nbsp; &rArr; &nbsp; Link verweist auf die ZIP-Version des Programms,
 
*der&nbsp; [http://en.lntwww.de/downloads/Sonstiges/Texte/Praktikum_LNTsim_Teil_A.pdf Praktikumsanleitung - Teil A]  &nbsp; &rArr; &nbsp; Link verweist auf die PDF-Version; Kapitel 7: Seite 119-144, Kapitel 8: Seite 145-164, und
 
*der&nbsp; [http://en.lntwww.de/downloads/Sonstiges/Texte/Praktikum_LNTsim_Teil_B.pdf Praktikumsanleitung - Teil B]  &nbsp; &rArr; &nbsp; Link verweist auf die PDF-Version; Kapitel 12: Seite 271-294.
 
  
 
+
==Principle and Motivation==
==Prinzip und Motivation==
 
 
<br>
 
<br>
Viele Nachrichtensignale sind analog und damit  gleichzeitig&nbsp; [[Signal_Representation/Signal_classification#Zeitkontinuierliche_und_zeitdiskrete_Signale|zeitkontinuierlich]]&nbsp; und&nbsp; [[Signal_Representation/Signal_classification#Wertkontinuierliche_und_wertdiskrete_Signale|wertkontinuierlich]]. Soll ein solches Analogsignal mittels eines Digitalsystems übertragen werden, so sind folgende Vorverarbeitungsschritte erforderlich:
+
Many message signals are analog and thus simultaneously&nbsp; [[Signal_Representation/Signal_classification#Zeitkontinuierliche_und_zeitdiskrete_Signale|time-continuous]]&nbsp; and&nbsp; [[Signal_Representation/Signal_classification#Wertkontinuierliche_und_wertdiskrete_Signale|continuous in value]]. If such an analog signal is to be transmitted by means of a digital system, the following preprocessing steps are required:
*die&nbsp; '''Abtastung'''&nbsp; des Nachrichtensignals&nbsp; $x(t)$, die zweckmäßigerweise – aber nicht notwendigerweise – zu äquidistanten Zeitpunkten erfolgt &nbsp; &rArr; &nbsp; '''Zeitdiskretisierung''',
+
*the&nbsp; '''sampling'''&nbsp; of the message signal&nbsp; $x(t)$, which is expediently - but not necessarily - performed at equidistant times &nbsp; &rArr; &nbsp; '''time discretization''',
*die&nbsp; '''Quantisierung'''&nbsp; der Abtastwerte, um so die Anzahl&nbsp; $M$&nbsp; der möglichen Werte auf einen endlichen Wert zu begrenzen  &nbsp; &rArr; &nbsp; '''Wertdiskretisierung'''.
+
*the&nbsp; '''quantization'''&nbsp; of the samples, so as to limit the number&nbsp; $M$&nbsp; of possible values to a finite value &nbsp; &rArr; &nbsp; '''value discretization'''.
  
  
Die Quantisierung wird erst im Kapitel&nbsp; [[Modulation_Methods/Pulscodemodulation|Pulscodemodulation]]&nbsp; des Buches „Modulationsverfahren” im Detail behandelt.
+
Quantization is not discussed in detail until the chapter&nbsp; [[Modulation_Methods/Pulscodemodulation|Pulse Code Modulation]]&nbsp;of the book "Modulation Methods".
  
[[File:P_ID1120__Sig_T_5_1_S1_neu.png|center|frame|Zur Zeitdiskretisierung des zeitkontinuierlichen Signals&nbsp; $x(t)$]]
+
[[File:P_ID1120__Sig_T_5_1_S1_neu.png|center|frame|On Time Discretization of the Time-Continuous Signal &nbsp; $x(t)$]]
  
Im Folgenden verwenden wir für die Beschreibung der Abtastung folgende Nomenklatur:
+
In the following, we use the following nomenclature to describe the sampling:
*Das zeitkontinuierliche Signal sei&nbsp; $x(t)$.
+
*let the continuous-time signal be&nbsp; $x(t)$.
*Das in äquidistanten Abständen&nbsp; $T_{\rm A}$&nbsp; abgetastete zeitdiskretisierte Signal sei&nbsp; $x_{\rm A}(t)$.
+
*Let the time-discretized signal sampled at equidistant intervals&nbsp; $T_{\rm A}$&nbsp; be&nbsp; $x_{\rm A}(t)$.
*Außerhalb der Abtastzeitpunkte&nbsp; $\nu \cdot T_{\rm A}$&nbsp; gilt stets&nbsp; $x_{\rm A}(t) = 0$.
+
*outside the sampling time points&nbsp; $\nu \cdot T_{\rm A}$&nbsp; always holds&nbsp; $x_{\rm A}(t) = 0$.
*Die Laufvariable&nbsp; $\nu$&nbsp; sei&nbsp; [[Signal_Representation/Calculating_With_Complex_Numbers#Reelle_Zahlenmengen|ganzzahlig]]:  &nbsp; &nbsp; $\nu \in \mathbb{Z} =  \{\hspace{0.05cm} \text{...}\hspace{0.05cm} , –3, –2, –1, \hspace{0.2cm}0, +1, +2, +3, \text{...} \hspace{0.05cm}\} $.
+
*The iterating variable&nbsp; $\nu$&nbsp; be&nbsp; [[Signal_Representation/Calculating_With_Complex_Numbers#Reelle_Zahlenmengen|an integer]]:  &nbsp; &nbsp; $\nu \in \mathbb{Z} =  \{\hspace{0.05cm} \text{...}\hspace{0.05cm} , –3, –2, –1, \hspace{0.2cm}0, +1, +2, +3, \text{...} \hspace{0.05cm}\} $.
*Dagegen ergibt sich zu den äquidistanten Abtastzeitpunkten mit der Konstanten&nbsp; $K$:
+
*In contrast, at the equidistant sampling times with the constant&nbsp; $K$, the result is:
 
   
 
   
 
:$$x_{\rm A}(\nu \cdot T_{\rm A}) = K \cdot x(\nu \cdot T_{\rm A})\hspace{0.05cm}.$$
 
:$$x_{\rm A}(\nu \cdot T_{\rm A}) = K \cdot x(\nu \cdot T_{\rm A})\hspace{0.05cm}.$$
  
Die Konstante hängt von der Art der Zeitdiskretisierung ab. Für die obige Skizze gilt&nbsp; $K = 1$.
+
The constant depends on the type of time discretization. For the above sketch&nbsp; $K = 1$ holds.
  
 
+
==Time Domain Representation==
==Zeitbereichsdarstellung==
 
 
<br>
 
<br>
 
{{BlaueBox|TEXT=
 
{{BlaueBox|TEXT=
$\text{Definition:}$&nbsp; Im gesamten $\rm LNTwww$ soll unter&nbsp; '''Abtastung'''&nbsp; die Multiplikation des zeitkontinuierlichen Signals&nbsp; $x(t)$&nbsp; mit dem&nbsp; ''Diracpuls''&nbsp; $p_{\delta}(t)$ verstanden werden:
+
$\text{Definition:}$&nbsp; Throughout $\rm LNTwww$, the &nbsp; '''sampling''''&nbsp; shall be understood as the multiplication of the time-continuous signal&nbsp; $x(t)$&nbsp; by the&nbsp; ''Dirac pulse'''&nbsp; $p_{\delta}(t)$:
 
   
 
   
 
:$$x_{\rm A}(t) = x(t) \cdot p_{\delta}(t)\hspace{0.05cm}.$$}}
 
:$$x_{\rm A}(t) = x(t) \cdot p_{\delta}(t)\hspace{0.05cm}.$$}}
  
  
Anzumerken ist, dass in der Literatur auch andere Beschreibungsformen gefunden werden. Den Autoren erscheint jedoch die hier gewählte Form im Hinblick auf die Spektraldarstellung und die Herleitung der&nbsp; [[Signal_Representation/Discrete_Fourier_Transform_(DFT)|Diskreten Fouriertransformation]]&nbsp;  (DFT) am besten geeignet.
+
AIt should be noted that other forms of description are found in the literature. However, to the authors, the form chosen here appears to be the most appropriate in terms of spectral representation and derivation of the&nbsp; [[Signal_Representation/Discrete_Fourier_Transform_(DFT)|Discrete Fourier Transform]]&nbsp;  (DFT).
  
 
{{BlaueBox|TEXT=
 
{{BlaueBox|TEXT=
$\text{Definition:}$&nbsp; Der&nbsp; '''Diracpuls (im Zeitbereich)'''&nbsp; besteht aus unendlich vielen Diracimpulsen, jeweils im gleichen Abstand&nbsp; $T_{\rm A}$&nbsp; und alle mit gleichem Impulsgewicht&nbsp; $T_{\rm A}$:
+
$\text{Definition:}$&nbsp; The&nbsp; '''Dirac comb (in the time domain)'''&nbsp; consists of infinitely many Dirac pulses, each equally spaced&nbsp; $T_{\rm A}$&nbsp; and all with equal pulse weight&nbsp; $T_{\rm A}$:
 
   
 
   
 
:$$p_{\delta}(t) =  \sum_{\nu = - \infty }^{+\infty} T_{\rm A} \cdot
 
:$$p_{\delta}(t) =  \sum_{\nu = - \infty }^{+\infty} T_{\rm A} \cdot
Line 75: Line 73:
  
  
Aufgrund dieser Definition ergeben sich für das abgetastete Signal folgende Eigenschaften:
+
Based on this definition, the sampled signal has the following properties:
*Das abgetastete Signal zum betrachteten Zeitpunkt&nbsp; $(\nu \cdot T_{\rm A})$&nbsp; ist gleich&nbsp; $T_{\rm A} \cdot x(\nu \cdot T_{\rm A}) · \delta (0)$.
+
*The sampled signal at the considered time&nbsp; $(\nu \cdot T_{\rm A})$&nbsp; is equal&nbsp; $T_{\rm A} \cdot x(\nu \cdot T_{\rm A}) - \delta (0)$.
*Da die Diracfunktion&nbsp; $\delta (t)$&nbsp; zur Zeit&nbsp; $t = 0$&nbsp; unendlich ist, sind eigentlich alle Signalwerte&nbsp; $x_{\rm A}(\nu \cdot T_{\rm A})$&nbsp; ebenfalls unendlich groß.
+
*Since the Dirac function&nbsp; $\delta (t)$&nbsp; is infinite at time&nbsp; $t = 0$&nbsp; actually all signal values&nbsp; $x_{\rm A}(\nu \cdot T_{\rm A})$&nbsp; are also infinite.
*Somit ist auch der auf der letzten Seite eingeführte Faktor&nbsp; $K$&nbsp; eigentlich unendlich groß.
+
*Thus, the factor&nbsp; $K$&nbsp; introduced on the last page is actually infinite as well.
*Zwei Abtastwerte&nbsp; $x_{\rm A}(\nu_1 \cdot T_{\rm A})$&nbsp; und&nbsp; $x_{\rm A}(\nu_2 \cdot T_{\rm A})$&nbsp; unterscheiden sich jedoch  im gleichen Verhältnis wie die Signalwerte&nbsp; $x(\nu_1 \cdot T_{\rm A})$&nbsp; und&nbsp; $x(\nu_2 \cdot T_{\rm A})$.
+
*Two samples&nbsp; $x_{\rm A}(\nu_1 \cdot T_{\rm A})$&nbsp; and&nbsp; $x_{\rm A}(\nu_2 \cdot T_{\rm A})$&nbsp; however, differ in the same proportion as the signal values&nbsp; $x(\nu_1 \cdot T_{\rm A})$&nbsp; and&nbsp; $x(\nu_2 \cdot T_{\rm A})$.
*Die Abtastwerte von&nbsp; $x(t)$&nbsp; erscheinen in den Impulsgewichten der Diracfunktionen:
+
*The samples of&nbsp; $x(t)$&nbsp; appear in the momentum weights of the Dirac functions:
 
   
 
   
 
:$$x_{\rm A}(t) =  \sum_{\nu = - \infty }^{+\infty} T_{\rm A} \cdot x(\nu \cdot T_{\rm A})\cdot
 
:$$x_{\rm A}(t) =  \sum_{\nu = - \infty }^{+\infty} T_{\rm A} \cdot x(\nu \cdot T_{\rm A})\cdot
Line 86: Line 84:
 
  )\hspace{0.05cm}.$$
 
  )\hspace{0.05cm}.$$
  
*Die zusätzliche Multiplikation mit&nbsp; $T_{\rm A}$&nbsp; ist erforderlich, damit&nbsp; $x(t)$&nbsp; und&nbsp; $x_{\rm A}(t)$&nbsp; gleiche Einheit besitzen. Beachten Sie hierbei, dass&nbsp; $\delta (t)$&nbsp; selbst die Einheit „1/s” aufweist.
+
*The additional multiplication by&nbsp; $T_{\rm A}$&nbsp; is necessary so that&nbsp; $x(t)$&nbsp; and&nbsp; $x_{\rm A}(t)$&nbsp; have the same unit. Note here that&nbsp; $\delta (t)$&nbsp; itself has the unit "1/s".
 
 
  
Die folgenden Seiten werden zeigen, dass diese gewöhnungsbedürftigen Gleichungen durchaus zu sinnvollen Ergebnissen führen, wenn man sie konsequent  anwendet.
 
  
 +
The following pages will show that these equations, which take some getting used to, do lead to reasonable results, if they are applied consistently.
  
==Diracpuls im Zeit- und im Frequenzbereich==
+
==Dirac Comb in Time and Frequency Domain==
 
<br>
 
<br>
 
{{BlaueBox|TEXT=
 
{{BlaueBox|TEXT=
$\text{Satz:}$&nbsp; Entwickelt man den&nbsp; '''Diracpuls'''&nbsp; in eine&nbsp; [[Signal_Representation/Fourier_Series|Fourierreihe]]&nbsp; und transformiert diese unter Anwendung des&nbsp; [[Signal_Representation/Fourier_Transform_Laws#Verschiebungssatz|Verschiebungssatzes]]&nbsp; in den Frequenzbereich, so ergibt sich folgende Korrespondenz:
+
$\text{Theorem:}$&nbsp; Developing the&nbsp; '''Dirac comb''''&nbsp; into a&nbsp; [[Signal_Representation/Fourier_Series|Fourier Series]]&nbsp; and transforming it into the frequency domain using the&nbsp; [[Signal_Representation/Fourier_Transform_Laws#Verschiebungssatz|Shift Theorem]]&nbsp; gives the following correspondence:
 
   
 
   
 
:$$p_{\delta}(t) =  \sum_{\nu = - \infty }^{+\infty} T_{\rm A} \cdot
 
:$$p_{\delta}(t) =  \sum_{\nu = - \infty }^{+\infty} T_{\rm A} \cdot
Line 102: Line 99:
 
  (f- \mu \cdot f_{\rm A} ).$$
 
  (f- \mu \cdot f_{\rm A} ).$$
  
Hierbei gibt&nbsp; $f_{\rm A} = 1/T_{\rm A}$&nbsp; den Abstand zweier benachbarter Diraclinien im Frequenzbereich an. }}
+
Here&nbsp; $f_{\rm A} = 1/T_{\rm A}$&nbsp; gives the distance between two adjacent dirac lines in the frequency domain. }}
 
 
 
   
 
   
 
{{BlaueBox|TEXT=
 
{{BlaueBox|TEXT=
$\text{Beweis:}$&nbsp; Die Herleitung der hier angegebenen Spektralfunktion&nbsp; $P_{\delta}(f)$&nbsp; geschieht in mehreren Schritten:
+
$\text{Proof:}$&nbsp; The derivation of the spectral function given here&nbsp; $P_{\delta}(f)$&nbsp; is done in several steps:
  
'''(1)'''&nbsp;&nbsp; Da&nbsp; $p_{\delta}(t)$&nbsp; periodisch mit dem konstanten Abstand&nbsp; $T_{\rm A}$&nbsp; zwischen zwei Diraclinien ist, kann die&nbsp; [[Signal_Representation/Fourier_Series#Komplexe_Fourierreihe|(komplexe) Fourierreihendarstellung]]&nbsp; angewendet werden:
+
'''(1)'''&nbsp;&nbsp; Since&nbsp; $p_{\delta}(t)$&nbsp; is periodic with the constant distance&nbsp; $T_{\rm A}$&nbsp; between two dirac lines, the&nbsp; [[[Signal_Representation/Fourier_Series#Komplexe_Fourierreihe|complex Fourier Series]]&nbsp; can be applied:
 
   
 
   
 
:$$p_{\delta}(t) =  \sum_{\mu = - \infty }^{+\infty} D_{\mu} \cdot
 
:$$p_{\delta}(t) =  \sum_{\mu = - \infty }^{+\infty} D_{\mu} \cdot
Line 117: Line 113:
 
  \cdot \hspace{0.05cm}t/T_{\rm A} }\hspace{0.1cm} {\rm d}t\hspace{0.05cm}.$$
 
  \cdot \hspace{0.05cm}t/T_{\rm A} }\hspace{0.1cm} {\rm d}t\hspace{0.05cm}.$$
  
'''(2)'''&nbsp;&nbsp; Im Bereich von&nbsp; $–T_{\rm A}/2$&nbsp; bis&nbsp; $+T_{\rm A}/2$&nbsp; gilt für den Diracpuls im Zeitbereich: &nbsp; $p_{\delta}(t) = T_{\rm A} \cdot \delta(t)$. Damit kann man für die komplexen Fourierkoeffizienten schreiben: &nbsp;  
+
'''(2)'''&nbsp;&nbsp; In the range from&nbsp; $-T_{\rm A}/2$&nbsp; to&nbsp; $+T_{\rm A}/2$&nbsp; holds for the Dirac comb in the time domain: &nbsp; $p_{\delta}(t) = T_{\rm A} \cdot \delta(t)$. Thus one can write for the complex Fourier coefficients: &nbsp;  
 
:$$D_{\mu} = \int_{-T_{\rm A}/2
 
:$$D_{\mu} = \int_{-T_{\rm A}/2
 
  }^{+T_{\rm A}/2}{\delta}(t) \cdot {\rm e}^{- {\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} 2 \pi \hspace{0.05cm}\cdot \hspace{0.05cm}\mu \hspace{0.05cm}
 
  }^{+T_{\rm A}/2}{\delta}(t) \cdot {\rm e}^{- {\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} 2 \pi \hspace{0.05cm}\cdot \hspace{0.05cm}\mu \hspace{0.05cm}
 
  \cdot \hspace{0.05cm}t/T_{\rm A} }\hspace{0.1cm} {\rm d}t\hspace{0.05cm}.$$  
 
  \cdot \hspace{0.05cm}t/T_{\rm A} }\hspace{0.1cm} {\rm d}t\hspace{0.05cm}.$$  
'''(3)'''&nbsp;&nbsp; Unter Berücksichtigung der Tatsache, dass für&nbsp; $t \neq 0$&nbsp; der Diracimpuls Null ist und für&nbsp; $t = 0$&nbsp; der komplexe Drehfaktor gleich&nbsp; $1$, gilt weiter:
+
'''(3)'''&nbsp;&nbsp; Considering that for&nbsp; $t \neq 0$&nbsp; the Dirac momentum is zero and for&nbsp; $t = 0$&nbsp; the complex angular factor is equal to&nbsp; $1$, it holds further:
 
:$$D_{\mu} = \int_{- T_{\rm A}/2
 
:$$D_{\mu} = \int_{- T_{\rm A}/2
 
  }^{+T_{\rm A}/2}{\delta}(t) \hspace{0.1cm} {\rm d}t = 1\hspace{0.5cm}{\Rightarrow}\hspace{0.5cm}
 
  }^{+T_{\rm A}/2}{\delta}(t) \hspace{0.1cm} {\rm d}t = 1\hspace{0.5cm}{\Rightarrow}\hspace{0.5cm}
Line 127: Line 123:
 
  \cdot 2 \hspace{0.05cm} \pi \cdot \hspace{0.05cm}\mu \hspace{0.05cm}\cdot \hspace{0.05cm}t/T_{\rm A} }\hspace{0.05cm}.
 
  \cdot 2 \hspace{0.05cm} \pi \cdot \hspace{0.05cm}\mu \hspace{0.05cm}\cdot \hspace{0.05cm}t/T_{\rm A} }\hspace{0.05cm}.
 
  $$
 
  $$
'''(4)'''&nbsp;&nbsp; Der&nbsp; [[Signal_Representation/Fourier_Transform_Laws#Verschiebungssatz|Verschiebungssatz im Frequenzbereich]]&nbsp; lautet mit&nbsp; $f_{\rm A} = 1/T_{\rm A}$:
+
'''(4)'''&nbsp;&nbsp; The &nbsp; [[Signal_Representation/Fourier_Transform_Laws#Verschiebungssatz|shifting theorem in the frequency domain]]&nbsp; is &nbsp; $f_{\rm A} = 1/T_{\rm A}$:
 
:$${\rm e}^{ {\rm j} \hspace{0.05cm}
 
:$${\rm e}^{ {\rm j} \hspace{0.05cm}
 
\hspace{0.05cm} \cdot 2 \hspace{0.05cm} \pi \hspace{0.05cm}\cdot \hspace{0.05cm}\mu \hspace{0.05cm}\cdot \hspace{0.05cm}
 
\hspace{0.05cm} \cdot 2 \hspace{0.05cm} \pi \hspace{0.05cm}\cdot \hspace{0.05cm}\mu \hspace{0.05cm}\cdot \hspace{0.05cm}
Line 134: Line 130:
 
  (f- \mu \cdot f_{\rm A}
 
  (f- \mu \cdot f_{\rm A}
 
  )\hspace{0.05cm}.$$  
 
  )\hspace{0.05cm}.$$  
'''(5)'''&nbsp;&nbsp; Wendet man das Ergebnis auf jeden einzelnen Summanden an, so erhält man schließlich:
+
'''(5)'''&nbsp;&nbsp; If you apply the result to each individual summand, you finally get:
 
   
 
   
 
:$$P_{\delta}(f) =  \sum_{\mu = - \infty }^{+\infty} \delta
 
:$$P_{\delta}(f) =  \sum_{\mu = - \infty }^{+\infty} \delta
Line 142: Line 138:
  
  
Das Ergebnis besagt:
+
The result states:
*Der Diracpuls&nbsp; $p_{\delta}(t)$&nbsp; im Zeitbereich besteht aus unendlich vielen Diracimpulsen, jeweils im gleichen Abstand&nbsp; $T_{\rm A}$&nbsp; und alle mit gleichem Impulsgewicht&nbsp; $T_{\rm A}$.
+
*The Dirac comb&nbsp; $p_{\delta}(t)$&nbsp; in the time domain consists of infinitely many Dirac impulses, each at the same distance&nbsp; $T_{\rm A}$&nbsp; and all with the same pulse weight&nbsp; $T_{\rm A}$.
*Die Fouriertransformierte von&nbsp; $p_{\delta}(t)$&nbsp; ergibt wiederum einen Diracpuls, aber nun im Frequenzbereich  &nbsp; ⇒ &nbsp; $P_{\delta}(f)$.
+
*The Fourier transform of&nbsp; $p_{\delta}(t)$&nbsp; again gives a Dirac comb, but now in the frequency range &nbsp; ⇒ &nbsp; $P_{\delta}(f)$.
*$P_{\delta}(f)$&nbsp; besteht ebenfalls aus unendlich vielen Diracimpulsen, nun aber im jeweiligen Abstand&nbsp; $f_{\rm A} = 1/T_{\rm A}$&nbsp; und alle mit dem Impulsgewicht&nbsp; $1$.
+
*$P_{\delta}(f)$&nbsp; also consists of infinitely many Dirac pulses, but now in the respective distance&nbsp; $f_{\rm A} = 1/T_{\rm A}$&nbsp; and all with momentum weight&nbsp; $1$.
*Die Abstände der Diraclinien in der Zeit– und Frequenzbereichsdarstellung folgen demnach dem&nbsp; [[Signal_Representation/Fourier_Transform_Laws#Reziprozit.C3.A4tsgesetz_von_Zeitdauer_und_Bandbreite|Reziprozitätsgesetz]]: &nbsp;  
+
*The distances of the diraclines in the time and frequency domain representation thus follow the&nbsp; [[Signal_Representation/Fourier_Transform_Laws#Reziprozit.C3.A4tsgesetz_von_Zeitdauer_und_Bandbreite|reciprocity theorem]]: &nbsp;  
 
:$$T_{\rm A} \cdot f_{\rm A} = 1 \hspace{0.05cm}.$$
 
:$$T_{\rm A} \cdot f_{\rm A} = 1 \hspace{0.05cm}.$$
  
  
[[File:EN_Sig_T_5_1_S3.png|right|frame|Diracpuls im Zeit- und Frequenzbereich]]
+
[[File:EN_Sig_T_5_1_S3.png|right|frame|Dirac Comb in the Time- and Frequency Domain]]
 
{{GraueBox|TEXT=
 
{{GraueBox|TEXT=
$\text{Beispiel 1:}$&nbsp; Die Grafik verdeutlicht die obigen Aussagen für
+
$\text{Example 1:}$&nbsp; The graph illustrates the above statements for
 
*$T_{\rm A} = 50\,{\rm &micro;s}$,  
 
*$T_{\rm A} = 50\,{\rm &micro;s}$,  
 
*$f_{\rm A} = 1/T_{\rm A} = 20\,\text{kHz}$ .
 
*$f_{\rm A} = 1/T_{\rm A} = 20\,\text{kHz}$ .
  
  
Man erkennt aus dieser Skizze auch die unterschiedlichen Impulsgewichte von&nbsp; $p_{\delta}(t)$&nbsp; und&nbsp; $P_{\delta}(f)$.}}
+
One can also see from this sketch the different momentum weights of&nbsp; $p_{\delta}(t)$&nbsp; and&nbsp; $P_{\delta}(f)$.}}
  
  
==Frequenzbereichsdarstellung==
+
==Frequency Domain Representation==
 
<br>
 
<br>
Zum Spektrum des abgetasteten Signals&nbsp; $x_{\rm A}(t)$&nbsp; kommt man durch Anwendung des&nbsp; [[Signal_Representation/The_Convolution_Theorem_and_Operation#Faltung_im_Frequenzbereich|Faltungssatzes]]. Dieser besagt, dass der Multiplikation im Zeitbereich die Faltung im Spektralbereich entspricht:
+
The spectrum of the sampled signal&nbsp; $x_{\rm A}(t)$&nbsp; is obtained by applying the&nbsp; [[Signal_Representation/The_Convolution_Theorem_and_Operation#Faltung_im_Frequenzbereich|convolution theorem in the frequency domain]].This states that multiplication in the time domain corresponds to convolution in the spectral domain:
 
   
 
   
 
:$$x_{\rm A}(t) = x(t) \cdot p_{\delta}(t)\hspace{0.2cm}\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\, \hspace{0.2cm}
 
:$$x_{\rm A}(t) = x(t) \cdot p_{\delta}(t)\hspace{0.2cm}\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\, \hspace{0.2cm}
 
  X_{\rm A}(f) = X(f) \star P_{\delta}(f)\hspace{0.05cm}.$$
 
  X_{\rm A}(f) = X(f) \star P_{\delta}(f)\hspace{0.05cm}.$$
  
Aus dem Spektrum&nbsp; $X(f)$&nbsp; wird durch Faltung mit der um&nbsp; $\mu \cdot f_{\rm A}$&nbsp; verschobenen Diraclinie:
+
From the spectrum&nbsp; $X(f)$&nbsp; by convolution with the diracline shifted by&nbsp; $\mu \cdot f_{\rm A}$&nbsp; we get:
 
   
 
   
 
:$$X(f) \star \delta
 
:$$X(f) \star \delta
Line 174: Line 170:
 
  )\hspace{0.05cm}.$$
 
  )\hspace{0.05cm}.$$
  
Wendet man dieses Ergebnis auf alle Diraclinien des Diracpulses an, so erhält man schließlich:
+
Applying this result to all diraclines of the Dirac pulse, we finally obtain:
 
   
 
   
 
:$$X_{\rm A}(f) = X(f) \star \sum_{\mu = - \infty }^{+\infty} \delta
 
:$$X_{\rm A}(f) = X(f) \star \sum_{\mu = - \infty }^{+\infty} \delta
Line 182: Line 178:
  
 
{{BlaueBox|TEXT=
 
{{BlaueBox|TEXT=
$\text{Fazit:}$&nbsp; Die Abtastung des analogen Zeitsignals&nbsp; $x(t)$&nbsp; in äquidistanten Abständen&nbsp; $T_{\rm A}$&nbsp; führt im Spektralbereich zu einer&nbsp; '''periodischen Fortsetzung'''&nbsp; von&nbsp; $X(f)$&nbsp; mit dem Frequenzabstand&nbsp; $f_{\rm A} = 1/T_{\rm A}$.}}
+
The sampling of the analogue time signal&nbsp; $x(t)$&nbsp; at equidistant intervals&nbsp; $T_{\rm A}$&nbsp; leads in the spectral domain to a&nbsp; '''periodic continuation'''&nbsp; of&nbsp; $X(f)$&nbsp; with frequency spacing of &nbsp; $f_{\rm A} = 1/T_{\rm A}$. }}
  
  
 
{{GraueBox|TEXT=
 
{{GraueBox|TEXT=
$\text{Beispiel 2:}$&nbsp;
+
$\text{Example 2:}$&nbsp;
Die obere Grafik zeigt&nbsp; (schematisch!)&nbsp; das Spektrum&nbsp; $X(f)$&nbsp; eines Analogsignals&nbsp; $x(t)$, das Frequenzen bis&nbsp; $5 \text{ kHz}$&nbsp; beinhaltet.
+
The upper graph shows&nbsp; (schematically!)&nbsp; the spectrum&nbsp; $X(f)$&nbsp; of an analogue signal&nbsp; $x(t)$, which includes frequencies up to&nbsp; $5 \text{ kHz}$&nbsp;.
  
[[File:P_ID1122__Sig_T_5_1_S4_neu.png|center|frame|Spektrum des abgetasteten Signals]]
+
[[File:P_ID1122__Sig_T_5_1_S4_neu.png|center|frame|Spectrum of the Sampled Signal]]
  
Tastet man das Signal mit der Abtastrate&nbsp; $f_{\rm A}\,\text{ = 20 kHz}$, also im jeweiligen Abstand&nbsp; $T_{\rm A}\, = {\rm 50 \, &micro;s}$&nbsp; ab, so erhält man das unten skizzierte periodische Spektrum&nbsp; $X_{\rm A}(f)$.  
+
Sampling the signal at the sampling rate&nbsp; $f_{\rm A}\,\text{ = 20 kHz}$, i.e. at the respective distance&nbsp; $T_{\rm A}\, = {\rm 50 \, &micro;s}$&nbsp; we obtain the periodic spectrum&nbsp; $X_{\rm A}(f)$ sketched below.  
*Da die Diracfunktionen unendlich schmal sind, beinhaltet das abgetastete Signal&nbsp; $x_{\rm A}(t)$&nbsp; auch beliebig hochfrequente Anteile.  
+
*Since the Dirac functions are infinitely narrow, the sampled signal&nbsp; $x_{\rm A}(t)$&nbsp; also contains arbitrary high-frequency components.  
*Dementsprechend ist die Spektralfunktion&nbsp; $X_{\rm A}(f)$&nbsp; des abgetasteten Signals bis ins Unendliche ausgedehnt.}}
+
*Accordingly, the spectral function&nbsp; $X_{\rm A}(f)$&nbsp; of the sampled signal is extended to infinity.}
  
  
==Signalrekonstruktion==
+
==Signal Reconstruction==
 
<br>
 
<br>
Die Signalabtastung ist bei einem digitalen Übertragungssystem kein Selbstzweck, sondern sie muss irgendwann wieder rückgängig gemacht werden. Betrachten wir zum Beispiel das folgende System:
+
Signal sampling is not an end in itself in a digital transmission system; it must be reversed at some point. Consider, for example, the following system:
  
[[File:P_ID1123__Sig_T_5_1_S5a_neu.png|center|frame|Signalabtastung und Signalrekonstruktion]]
+
[[File:P_ID1123__Sig_T_5_1_S5a_neu.png|center|frame|Sampling and Reconstruction of a Signal]]
  
*Das Analogsignal&nbsp; $x(t)$&nbsp; mit der  Bandbreite&nbsp; $B_{\rm NF}$&nbsp; wird wie oben beschrieben abgetastet.  
+
*The analogue signal&nbsp; $x(t)$&nbsp; with bandwidth&nbsp; $B_{\rm NF}$&nbsp; is sampled as described above.  
*Am Ausgang eines idealen Übertragungssystems liegt das ebenfalls zeitdiskrete Signal&nbsp; $y_{\rm A}(t) = x_{\rm A}(t)$&nbsp; vor.  
+
*At the output of an ideal transmission system, the likewise time-discrete signal&nbsp; $y_{\rm A}(t) = x_{\rm A}(t)$&nbsp; is present.  
*Die Frage ist nun, wie der Block&nbsp; '''Signalrekonstruktion'''&nbsp; zu gestalten ist, damit auch&nbsp; $y(t) = x(t)$&nbsp; gilt.
+
*The question now is how the block&nbsp; '''signal reconstruction'''&nbsp; is to be designed so that also&nbsp; $y(t) = x(t)$&nbsp; applies.
  
 
+
The solution is relatively simple if one considers the spectral functions: &nbsp; One obtains from&nbsp; $Y_{\rm A}(f)$&nbsp; the spectrum&nbsp; $Y(f) = X(f)$&nbsp; by a low-pass with the&nbsp; [[Linear_and_Time_Invariant_Systems/Systembeschreibung_im_Frequenzbereich#.C3.9Cbertragungsfunktion_-_Frequenzgang|Frequency Response]]&nbsp; $H(f)$, which&nbsp;
Die Lösung ist relativ einfach, wenn man die Spektralfunktionen betrachtet: &nbsp; Man erhält aus&nbsp; $Y_{\rm A}(f)$&nbsp; das Spektrum&nbsp; $Y(f) = X(f)$&nbsp; durch einen Tiefpass mit dem&nbsp; [[Linear_and_Time_Invariant_Systems/Systembeschreibung_im_Frequenzbereich#.C3.9Cbertragungsfunktion_-_Frequenzgang|Frequenzgang]]&nbsp; $H(f)$, der&nbsp;
+
[[File:P_ID1124__Sig_T_5_1_S5b_neu.png|right|frame|Frequency Domain Representation of the Signal Reconstruction Process]]
[[File:P_ID1124__Sig_T_5_1_S5b_neu.png|right|frame|Frequenzbereichsdarstellung der Signalrekonstruktion]]
+
*passes the low frequencies unaltered:
*die tiefen Frequenzen unverfälscht durchlässt:
 
 
:$$H(f) = 1 \hspace{0.3cm}{\rm{f\ddot{u}r}} \hspace{0.3cm} |f| \le B_{\rm
 
:$$H(f) = 1 \hspace{0.3cm}{\rm{f\ddot{u}r}} \hspace{0.3cm} |f| \le B_{\rm
 
   NF}\hspace{0.05cm},$$
 
   NF}\hspace{0.05cm},$$
*die hohen Frequenzen vollständig unterdrückt:
+
*suppresses the high frequencies completely:
 
:$$H(f) = 0 \hspace{0.3cm}{\rm{f\ddot{u}r}} \hspace{0.3cm} |f| \ge f_{\rm A} - B_{\rm
 
:$$H(f) = 0 \hspace{0.3cm}{\rm{f\ddot{u}r}} \hspace{0.3cm} |f| \ge f_{\rm A} - B_{\rm
 
   NF}\hspace{0.05cm}.$$
 
   NF}\hspace{0.05cm}.$$
 
   
 
   
Weiter ist aus der Grafik zu erkennen, dass der Frequenzgang&nbsp; $H(f)$&nbsp; im Bereich von&nbsp; $B_{\rm NF}$&nbsp; bis&nbsp; $f_{\rm A}–B_{\rm NF}$&nbsp; beliebig geformt sein kann,  
+
Further it can be seen from the graph that the frequency response&nbsp; $H(f)$&nbsp; in the range of&nbsp; $B_{\rm NF}$&nbsp; to&nbsp; $f_{\rm A}-B_{\rm NF}$&nbsp; can be arbitrarily shaped,  
*beispielsweise linear abfallend (gestrichelter Verlauf)  
+
*for example, linearly sloping (dashed line)  
*oder auch rechteckförmig,  
+
*or also rectangular,  
 
 
  
solange die beiden oben genannten Bedingungen erfüllt sind.
+
as long as both of the above conditions are met.
 
<br clear=all>
 
<br clear=all>
==Das Abtasttheorem==
+
==The Sampling Theorem==
 
<br>
 
<br>
Die vollständige Rekonstruktion des Analogsignals&nbsp; $y(t)$&nbsp; aus dem abgetasteten Signal&nbsp; $y_{\rm A}(t) = x_{\rm A}(t)$&nbsp; ist nur möglich, wenn die Abtastrate&nbsp; $f_{\rm A}$&nbsp; entsprechend der Bandbreite&nbsp; $B_{\rm NF}$&nbsp; des Nachrichtensignals richtig gewählt wurde.  
+
The complete reconstruction of the analogue signal&nbsp; $y(t)$&nbsp; from the sampled signal&nbsp; $y_{\rm A}(t) = x_{\rm A}(t)$&nbsp; is only possible if the sampling rate&nbsp; $f_{\rm A}$&nbsp; corresponding to the bandwidth&nbsp; $B_{\rm NF}$&nbsp; of the message signal has been chosen correctly.  
  
Aus der Grafik der&nbsp; [[Signal_Representation/Time_Discrete_Signal_Representation#Signalrekonstruktion|letzten Seite]]&nbsp; erkennt man, dass folgende Bedingung erfüllt sein muss:
+
From the graph of the&nbsp; [[Signal_Representation/Time_Discrete_Signal_Representation#Signalrekonstruktion|last page]]&nbsp;, it can be seen that the following condition must be fulfilled:
  
 
:$$f_{\rm A} - B_{\rm  NF} > B_{\rm  NF} \hspace{0.3cm}\Rightarrow \hspace{0.3cm}f_{\rm A} > 2 \cdot  B_{\rm  NF}\hspace{0.05cm}.$$
 
:$$f_{\rm A} - B_{\rm  NF} > B_{\rm  NF} \hspace{0.3cm}\Rightarrow \hspace{0.3cm}f_{\rm A} > 2 \cdot  B_{\rm  NF}\hspace{0.05cm}.$$
 
   
 
   
 
{{BlaueBox|TEXT=
 
{{BlaueBox|TEXT=
$\text{Abtasttheorem:}$&nbsp; Besitzt ein Analogsignal&nbsp; $x(t)$&nbsp; Spektralanteile im Bereich&nbsp; $\vert f \vert < B_{\rm NF}$, so kann dieses aus seinem abgetasteten Signal nur dann vollständig rekonstruiert werden, wenn die Abtastrate hinreichend groß ist:
+
$\text{Sampling Theorem:}$&nbsp; If an analogue signal&nbsp; $x(t)$&nbsp; has spectral components in the range&nbsp; $\vert f \vert < B_{\rm NF}$, it can only be completely reconstructed from its sampled signal if the sampling rate is sufficiently large:
 
:$$f_{\rm A} ≥ 2 \cdot B_{\rm NF}.$$  
 
:$$f_{\rm A} ≥ 2 \cdot B_{\rm NF}.$$  
  
Für den Abstand zweier Abtastwerte muss demnach gelten:
+
Accordingly, the following must apply to the distance between two samples:
 
   
 
   
 
:$$T_{\rm A} \le \frac{1}{ 2 \cdot B_{\rm  NF} }\hspace{0.05cm}.$$}}
 
:$$T_{\rm A} \le \frac{1}{ 2 \cdot B_{\rm  NF} }\hspace{0.05cm}.$$}}
  
  
Wird bei der Abtastung der größtmögliche Wert &nbsp; ⇒ &nbsp; $T_{\rm A} = 1/(2B_{\rm NF})$&nbsp; herangezogen,  
+
If the largest possible value &nbsp; ⇒ &nbsp; $T_{\rm A} = 1/(2B_{\rm NF})$&nbsp; is used for sampling,  
*so muss zur Signalrekonstruktion des Analogsignals aus seinen Abtastwerten
+
*then, in order to reconstruct the analogue signal from its sampled values,
*ein idealer, rechteckförmiger Tiefpass mit der Grenzfrequenz&nbsp; $f_{\rm G} = f_{\rm A}/2 = 1/(2T_{\rm A})$&nbsp; verwendet werden.
+
*one must use an ideal, rectangular low-pass filter with cut-off frequency&nbsp; $f_{\rm G} = f_{\rm A}/2 = 1/(2T_{\rm A})$&nbsp;.
  
  
 
{{GraueBox|TEXT=
 
{{GraueBox|TEXT=
$\text{Beispiel 3:}$&nbsp; Die Grafik zeigt oben das auf&nbsp; $\pm\text{ 5 kHz}$&nbsp; begrenzte Spektrum&nbsp; $X(f)$&nbsp; eines Analogsignals, unten das Spektrum&nbsp; $X_{\rm A}(f)$&nbsp; des im Abstand&nbsp; $T_{\rm A} =\,\text{ 100 &micro;s}$&nbsp; abgetasteten Signals &nbsp; ⇒ &nbsp; $f_{\rm A}=\,\text{ 10 kHz}$.  
+
$\text{Example 3:}$&nbsp; The graph above shows the spectrum&nbsp; $\pm\text{ 5 kHz}$&nbsp; of an analogue signal limited to&nbsp; $X(f)$&nbsp; below the spectrum&nbsp; $X_{\rm A}(f)$&nbsp; of the signal sampled at distance&nbsp; $T_{\rm A} =\,\text{ 100 &micro;s}$&nbsp; ⇒ &nbsp; $f_{\rm A}=\,\text{ 10 kHz}$.  
[[File:P_ID1125__Sig_T_5_1_S6_neu.png|right|frame|Abtasttheorem im Frequenzbereich]]
+
[[File:P_ID1125__Sig_T_5_1_S6_neu.png|right|frame|Sampling Theorem in the Frequency Domain]]
<br>Zusätzlich eingezeichnet ist der Frequenzgang&nbsp; $H(f)$&nbsp; des Tiefpasses zur Signalrekonstruktion, dessen Grenzfrequenz&nbsp; $f_{\rm G} = f_{\rm A}/2 = 5\,\text{ kHz}$&nbsp; betragen muss.
+
<br>Additionally drawn is the frequency response&nbsp; $H(f)$&nbsp; of the low-pass filter for signal reconstruction, whose cut-off frequency must be &nbsp; $f_{\rm G} = f_{\rm A}/2 = 5\,\text{ kHz}$&nbsp;.
  
  
*Mit jedem anderen&nbsp; $f_{\rm G}$–Wert ergäbe sich&nbsp; $Y(f) \neq X(f)$.  
+
*With any other&nbsp; $f_{\rm G}$ value, the result would be&nbsp; $Y(f) \neq X(f)$.  
*Bei&nbsp; $f_{\rm G} < 5\,\text{ kHz}$&nbsp; fehlen die oberen&nbsp; $X(f)$–Anteile.
+
*For&nbsp; $f_{\rm G} < 5\,\text{ kHz}$&nbsp; the upper&nbsp; $X(f)$ portions are missing.
* Bei&nbsp; $f_{\rm G} > 5\,\text{ kHz}$&nbsp; kommt es aufgrund von Faltungsprodukten zu unerwünschten Spektralanteilen in&nbsp; $Y(f)$.
+
* At&nbsp; $f_{\rm G} > 5\,\text{ kHz}$&nbsp; there are unwanted spectral components in&nbsp; $Y(f)$ due to convolution operations.
 
<br clear=all>
 
<br clear=all>
Wäre die Abtastung beim Sender mit einer Abtastrate&nbsp; $f_{\rm A} < 10\,\text{ kHz}$&nbsp; erfolgt  &nbsp; ⇒ &nbsp; $T_{\rm A} >100 \,{\rm &micro;  s}$, so wäre das Analogsignal&nbsp; $y(t) = x(t)$&nbsp; aus den Abtastwerten&nbsp; $y_{\rm A}(t)$&nbsp; auf keinen Fall rekonstruierbar.}}
+
If the sampling at the transmitter had been done with a sampling rate&nbsp; $f_{\rm A} < 10\,\text{ kHz}$&nbsp; &nbsp; ⇒ &nbsp; $T_{\rm A} >100 \,{\rm &micro;  s}$, the analogue signal&nbsp; $y(t) = x(t)$&nbsp; would not be reconstructible from the samples&nbsp; $y_{\rm A}(t)$&nbsp; in any case. }}
  
  
''Hinweis'': &nbsp; Zu der hier behandelten Thematik gibt es ein interaktives Applet: &nbsp;  
+
''Note'': &nbsp; There is an interactive applet on the topic covered here: &nbsp; [[Applets:Abtastung_periodischer_Signale_und_Signalrekonstruktion_(Applet)|Sampling of Analogue Signals and Signal Reconstruction]]
[[Applets:Abtastung_periodischer_Signale_und_Signalrekonstruktion_(Applet)|Abtastung analoger Signale und Signalrekonstruktion]]
 
  
  
==Aufgaben zum Kapitel==
+
==Exercises For the Chapter==
 
<br>
 
<br>
 
[[Aufgaben:Exercise 5.1: Sampling Theorem|Exercise 5.1: Sampling Theorem]]
 
[[Aufgaben:Exercise 5.1: Sampling Theorem|Exercise 5.1: Sampling Theorem]]

Revision as of 23:41, 27 December 2020

# OVERVIEW OF THE FIFTH MAIN CHAPTER #


A prerequisite for the system-theoretical investigation of digital systems or for their computer simulation is a suitable discrete-time signal description. This chapter clarifies the mathematical transition from time-continuous to time-discrete signals, starting from  Fourier Transform and Its Inverse .

The chapter includes in detail:

  • the time and frequency domain representation  of discrete-time signals,
  • the sampling theorem, which must be strictly observed in time discretization,
  • the reconstruction of the analog signal  from the time-discrete representation,
  • the Discrete Fourier Transform  (DFT) and its inverse (IDFT),
  • the possibilities of error  when applying DFT and IDFT,
  • the application of spectral analysis  to the improvement of metrological procedures, and.
  • the FFT algorithm particularly suitable for computer implementation.


For more information on the subject, as well as tasks, simulations, and programming exercises, see

  • Chapter 7:     Discrete Fourier Transform, program dft,
  • Chapter 8:     Spectral Analysis, program stp, and
  • Chapter 12:   Pulse code modulation, program pcm

of the laboratory course „Simulation Methods in Communications Engineering”. This (former) LNT course at the TU Munich is based on

  • the teaching software package  LNTsim   ⇒   link refers to the ZIP version of the program,
  • the   Lab Instruction - Part A   ⇒   link refers to the PDF version; Chapter 7: page 119-144, Chapter 8: page 145-164, and
  • the   Lab Instruction - Part B   ⇒   link refers to the PDF version; Chapter 12: page 271-294.


Principle and Motivation


Many message signals are analog and thus simultaneously  time-continuous  and  continuous in value. If such an analog signal is to be transmitted by means of a digital system, the following preprocessing steps are required:

  • the  sampling  of the message signal  $x(t)$, which is expediently - but not necessarily - performed at equidistant times   ⇒   time discretization,
  • the  quantization  of the samples, so as to limit the number  $M$  of possible values to a finite value   ⇒   value discretization.


Quantization is not discussed in detail until the chapter  Pulse Code Modulation of the book "Modulation Methods".

On Time Discretization of the Time-Continuous Signal   $x(t)$

In the following, we use the following nomenclature to describe the sampling:

  • let the continuous-time signal be  $x(t)$.
  • Let the time-discretized signal sampled at equidistant intervals  $T_{\rm A}$  be  $x_{\rm A}(t)$.
  • outside the sampling time points  $\nu \cdot T_{\rm A}$  always holds  $x_{\rm A}(t) = 0$.
  • The iterating variable  $\nu$  be  an integer:     $\nu \in \mathbb{Z} = \{\hspace{0.05cm} \text{...}\hspace{0.05cm} , –3, –2, –1, \hspace{0.2cm}0, +1, +2, +3, \text{...} \hspace{0.05cm}\} $.
  • In contrast, at the equidistant sampling times with the constant  $K$, the result is:
$$x_{\rm A}(\nu \cdot T_{\rm A}) = K \cdot x(\nu \cdot T_{\rm A})\hspace{0.05cm}.$$

The constant depends on the type of time discretization. For the above sketch  $K = 1$ holds.

Time Domain Representation


$\text{Definition:}$  Throughout $\rm LNTwww$, the   sampling''  shall be understood as the multiplication of the time-continuous signal  $x(t)$  by the  Dirac pulse  $p_{\delta}(t)$:

$$x_{\rm A}(t) = x(t) \cdot p_{\delta}(t)\hspace{0.05cm}.$$


AIt should be noted that other forms of description are found in the literature. However, to the authors, the form chosen here appears to be the most appropriate in terms of spectral representation and derivation of the  Discrete Fourier Transform  (DFT).

$\text{Definition:}$  The  Dirac comb (in the time domain)  consists of infinitely many Dirac pulses, each equally spaced  $T_{\rm A}$  and all with equal pulse weight  $T_{\rm A}$:

$$p_{\delta}(t) = \sum_{\nu = - \infty }^{+\infty} T_{\rm A} \cdot \delta(t- \nu \cdot T_{\rm A} )\hspace{0.05cm}.$$


Based on this definition, the sampled signal has the following properties:

  • The sampled signal at the considered time  $(\nu \cdot T_{\rm A})$  is equal  $T_{\rm A} \cdot x(\nu \cdot T_{\rm A}) - \delta (0)$.
  • Since the Dirac function  $\delta (t)$  is infinite at time  $t = 0$  actually all signal values  $x_{\rm A}(\nu \cdot T_{\rm A})$  are also infinite.
  • Thus, the factor  $K$  introduced on the last page is actually infinite as well.
  • Two samples  $x_{\rm A}(\nu_1 \cdot T_{\rm A})$  and  $x_{\rm A}(\nu_2 \cdot T_{\rm A})$  however, differ in the same proportion as the signal values  $x(\nu_1 \cdot T_{\rm A})$  and  $x(\nu_2 \cdot T_{\rm A})$.
  • The samples of  $x(t)$  appear in the momentum weights of the Dirac functions:
$$x_{\rm A}(t) = \sum_{\nu = - \infty }^{+\infty} T_{\rm A} \cdot x(\nu \cdot T_{\rm A})\cdot \delta (t- \nu \cdot T_{\rm A} )\hspace{0.05cm}.$$
  • The additional multiplication by  $T_{\rm A}$  is necessary so that  $x(t)$  and  $x_{\rm A}(t)$  have the same unit. Note here that  $\delta (t)$  itself has the unit "1/s".


The following pages will show that these equations, which take some getting used to, do lead to reasonable results, if they are applied consistently.

Dirac Comb in Time and Frequency Domain


$\text{Theorem:}$  Developing the  Dirac comb'  into a  Fourier Series  and transforming it into the frequency domain using the  Shift Theorem  gives the following correspondence:

$$p_{\delta}(t) = \sum_{\nu = - \infty }^{+\infty} T_{\rm A} \cdot \delta(t- \nu \cdot T_{\rm A} )\hspace{0.2cm}\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\, \hspace{0.2cm} P_{\delta}(f) = \sum_{\mu = - \infty }^{+\infty} \delta (f- \mu \cdot f_{\rm A} ).$$

Here  $f_{\rm A} = 1/T_{\rm A}$  gives the distance between two adjacent dirac lines in the frequency domain.

$\text{Proof:}$  The derivation of the spectral function given here  $P_{\delta}(f)$  is done in several steps:

(1)   Since  $p_{\delta}(t)$  is periodic with the constant distance  $T_{\rm A}$  between two dirac lines, the  [[[Signal_Representation/Fourier_Series#Komplexe_Fourierreihe|complex Fourier Series]]  can be applied:

$$p_{\delta}(t) = \sum_{\mu = - \infty }^{+\infty} D_{\mu} \cdot {\rm e}^{\hspace{0.05cm}{\rm j} \hspace{0.05cm} \cdot 2 \hspace{0.05cm} \pi \hspace{0.05cm}\cdot \hspace{0.05cm}\mu \hspace{0.05cm}\cdot \hspace{0.05cm}t/T_{\rm A} } \hspace{0.3cm}{\rm mit}\hspace{0.3cm} D_{\mu} = \frac{1}{T_{\rm A} } \cdot \int_{-T_{\rm A}/2 }^{+T_{\rm A}/2}p_{\delta}(t) \cdot {\rm e}^{- {\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} 2 \pi \hspace{0.05cm}\cdot \hspace{0.05cm}\mu \hspace{0.05cm} \cdot \hspace{0.05cm}t/T_{\rm A} }\hspace{0.1cm} {\rm d}t\hspace{0.05cm}.$$

(2)   In the range from  $-T_{\rm A}/2$  to  $+T_{\rm A}/2$  holds for the Dirac comb in the time domain:   $p_{\delta}(t) = T_{\rm A} \cdot \delta(t)$. Thus one can write for the complex Fourier coefficients:  

$$D_{\mu} = \int_{-T_{\rm A}/2 }^{+T_{\rm A}/2}{\delta}(t) \cdot {\rm e}^{- {\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} 2 \pi \hspace{0.05cm}\cdot \hspace{0.05cm}\mu \hspace{0.05cm} \cdot \hspace{0.05cm}t/T_{\rm A} }\hspace{0.1cm} {\rm d}t\hspace{0.05cm}.$$

(3)   Considering that for  $t \neq 0$  the Dirac momentum is zero and for  $t = 0$  the complex angular factor is equal to  $1$, it holds further:

$$D_{\mu} = \int_{- T_{\rm A}/2 }^{+T_{\rm A}/2}{\delta}(t) \hspace{0.1cm} {\rm d}t = 1\hspace{0.5cm}{\Rightarrow}\hspace{0.5cm} p_{\delta}(t) = \sum_{\mu = - \infty }^{+\infty} {\rm e}^{ {\rm j} \hspace{0.05cm} \cdot 2 \hspace{0.05cm} \pi \cdot \hspace{0.05cm}\mu \hspace{0.05cm}\cdot \hspace{0.05cm}t/T_{\rm A} }\hspace{0.05cm}. $$

(4)   The   shifting theorem in the frequency domain  is   $f_{\rm A} = 1/T_{\rm A}$:

$${\rm e}^{ {\rm j} \hspace{0.05cm} \hspace{0.05cm} \cdot 2 \hspace{0.05cm} \pi \hspace{0.05cm}\cdot \hspace{0.05cm}\mu \hspace{0.05cm}\cdot \hspace{0.05cm} f_{\rm A}\hspace{0.05cm}\cdot \hspace{0.05cm}t}\hspace{0.2cm}\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\, \hspace{0.2cm} \delta (f- \mu \cdot f_{\rm A} )\hspace{0.05cm}.$$

(5)   If you apply the result to each individual summand, you finally get:

$$P_{\delta}(f) = \sum_{\mu = - \infty }^{+\infty} \delta (f- \mu \cdot f_{\rm A} )\hspace{0.05cm}.$$
q.e.d.


The result states:

  • The Dirac comb  $p_{\delta}(t)$  in the time domain consists of infinitely many Dirac impulses, each at the same distance  $T_{\rm A}$  and all with the same pulse weight  $T_{\rm A}$.
  • The Fourier transform of  $p_{\delta}(t)$  again gives a Dirac comb, but now in the frequency range   ⇒   $P_{\delta}(f)$.
  • $P_{\delta}(f)$  also consists of infinitely many Dirac pulses, but now in the respective distance  $f_{\rm A} = 1/T_{\rm A}$  and all with momentum weight  $1$.
  • The distances of the diraclines in the time and frequency domain representation thus follow the  reciprocity theorem:  
$$T_{\rm A} \cdot f_{\rm A} = 1 \hspace{0.05cm}.$$


Dirac Comb in the Time- and Frequency Domain

$\text{Example 1:}$  The graph illustrates the above statements for

  • $T_{\rm A} = 50\,{\rm µs}$,
  • $f_{\rm A} = 1/T_{\rm A} = 20\,\text{kHz}$ .


One can also see from this sketch the different momentum weights of  $p_{\delta}(t)$  and  $P_{\delta}(f)$.


Frequency Domain Representation


The spectrum of the sampled signal  $x_{\rm A}(t)$  is obtained by applying the  convolution theorem in the frequency domain.This states that multiplication in the time domain corresponds to convolution in the spectral domain:

$$x_{\rm A}(t) = x(t) \cdot p_{\delta}(t)\hspace{0.2cm}\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\, \hspace{0.2cm} X_{\rm A}(f) = X(f) \star P_{\delta}(f)\hspace{0.05cm}.$$

From the spectrum  $X(f)$  by convolution with the diracline shifted by  $\mu \cdot f_{\rm A}$  we get:

$$X(f) \star \delta (f- \mu \cdot f_{\rm A} )= X (f- \mu \cdot f_{\rm A} )\hspace{0.05cm}.$$

Applying this result to all diraclines of the Dirac pulse, we finally obtain:

$$X_{\rm A}(f) = X(f) \star \sum_{\mu = - \infty }^{+\infty} \delta (f- \mu \cdot f_{\rm A} ) = \sum_{\mu = - \infty }^{+\infty} X (f- \mu \cdot f_{\rm A} )\hspace{0.05cm}.$$

The sampling of the analogue time signal  $x(t)$  at equidistant intervals  $T_{\rm A}$  leads in the spectral domain to a  periodic continuation  of  $X(f)$  with frequency spacing of   $f_{\rm A} = 1/T_{\rm A}$.


$\text{Example 2:}$  The upper graph shows  (schematically!)  the spectrum  $X(f)$  of an analogue signal  $x(t)$, which includes frequencies up to  $5 \text{ kHz}$ .

Spectrum of the Sampled Signal

Sampling the signal at the sampling rate  $f_{\rm A}\,\text{ = 20 kHz}$, i.e. at the respective distance  $T_{\rm A}\, = {\rm 50 \, µs}$  we obtain the periodic spectrum  $X_{\rm A}(f)$ sketched below.

  • Since the Dirac functions are infinitely narrow, the sampled signal  $x_{\rm A}(t)$  also contains arbitrary high-frequency components.
  • Accordingly, the spectral function  $X_{\rm A}(f)$  of the sampled signal is extended to infinity.}


Signal Reconstruction


Signal sampling is not an end in itself in a digital transmission system; it must be reversed at some point. Consider, for example, the following system:

Sampling and Reconstruction of a Signal
  • The analogue signal  $x(t)$  with bandwidth  $B_{\rm NF}$  is sampled as described above.
  • At the output of an ideal transmission system, the likewise time-discrete signal  $y_{\rm A}(t) = x_{\rm A}(t)$  is present.
  • The question now is how the block  signal reconstruction  is to be designed so that also  $y(t) = x(t)$  applies.

The solution is relatively simple if one considers the spectral functions:   One obtains from  $Y_{\rm A}(f)$  the spectrum  $Y(f) = X(f)$  by a low-pass with the  Frequency Response  $H(f)$, which 

Frequency Domain Representation of the Signal Reconstruction Process
  • passes the low frequencies unaltered:
$$H(f) = 1 \hspace{0.3cm}{\rm{f\ddot{u}r <div style="clear:both;"> </div> </div> \hspace{0.3cm} |f| \le B_{\rm NF}\hspace{0.05cm},$$
  • suppresses the high frequencies completely:
$$H(f) = 0 \hspace{0.3cm}{\rm{f\ddot{u}r}} \hspace{0.3cm} |f| \ge f_{\rm A} - B_{\rm NF}\hspace{0.05cm}.$$

Further it can be seen from the graph that the frequency response  $H(f)$  in the range of  $B_{\rm NF}$  to  $f_{\rm A}-B_{\rm NF}$  can be arbitrarily shaped,

  • for example, linearly sloping (dashed line)
  • or also rectangular,

as long as both of the above conditions are met.

The Sampling Theorem


The complete reconstruction of the analogue signal  $y(t)$  from the sampled signal  $y_{\rm A}(t) = x_{\rm A}(t)$  is only possible if the sampling rate  $f_{\rm A}$  corresponding to the bandwidth  $B_{\rm NF}$  of the message signal has been chosen correctly.

From the graph of the  last page , it can be seen that the following condition must be fulfilled:

$$f_{\rm A} - B_{\rm NF} > B_{\rm NF} \hspace{0.3cm}\Rightarrow \hspace{0.3cm}f_{\rm A} > 2 \cdot B_{\rm NF}\hspace{0.05cm}.$$

$\text{Sampling Theorem:}$  If an analogue signal  $x(t)$  has spectral components in the range  $\vert f \vert < B_{\rm NF}$, it can only be completely reconstructed from its sampled signal if the sampling rate is sufficiently large:

$$f_{\rm A} ≥ 2 \cdot B_{\rm NF}.$$

Accordingly, the following must apply to the distance between two samples:

$$T_{\rm A} \le \frac{1}{ 2 \cdot B_{\rm NF} }\hspace{0.05cm}.$$


If the largest possible value   ⇒   $T_{\rm A} = 1/(2B_{\rm NF})$  is used for sampling,

  • then, in order to reconstruct the analogue signal from its sampled values,
  • one must use an ideal, rectangular low-pass filter with cut-off frequency  $f_{\rm G} = f_{\rm A}/2 = 1/(2T_{\rm A})$ .


$\text{Example 3:}$  The graph above shows the spectrum  $\pm\text{ 5 kHz}$  of an analogue signal limited to  $X(f)$  below the spectrum  $X_{\rm A}(f)$  of the signal sampled at distance  $T_{\rm A} =\,\text{ 100 µs}$  ⇒   $f_{\rm A}=\,\text{ 10 kHz}$.

Sampling Theorem in the Frequency Domain


Additionally drawn is the frequency response  $H(f)$  of the low-pass filter for signal reconstruction, whose cut-off frequency must be   $f_{\rm G} = f_{\rm A}/2 = 5\,\text{ kHz}$ .


  • With any other  $f_{\rm G}$ value, the result would be  $Y(f) \neq X(f)$.
  • For  $f_{\rm G} < 5\,\text{ kHz}$  the upper  $X(f)$ portions are missing.
  • At  $f_{\rm G} > 5\,\text{ kHz}$  there are unwanted spectral components in  $Y(f)$ due to convolution operations.


If the sampling at the transmitter had been done with a sampling rate  $f_{\rm A} < 10\,\text{ kHz}$    ⇒   $T_{\rm A} >100 \,{\rm µ s}$, the analogue signal  $y(t) = x(t)$  would not be reconstructible from the samples  $y_{\rm A}(t)$  in any case.


Note:   There is an interactive applet on the topic covered here:   Sampling of Analogue Signals and Signal Reconstruction


Exercises For the Chapter


Exercise 5.1: Sampling Theorem

Exercise 5.1Z: Sampling of Harmonic Oscillations