Difference between revisions of "Signal Representation/Discrete Fourier Transform (DFT)"

From LNTwww
Line 6: Line 6:
 
}}
 
}}
  
==Argumente für die diskrete Realisierung der Fouriertransformation==
+
==Arguments for the Discrete Realisation of the Fourier Transform==
 
<br>
 
<br>
Die&nbsp; '''Fouriertransformation'''&nbsp; gemäß der bisherigen Beschreibung im Kapitel&nbsp; [[Signal_Representation/Fourier_Transform_and_Its_Inverse|Aperiodische Signale &ndash; Impulse]]&nbsp; weist aufgrund der unbegrenzten Ausdehnung des Integrationsintervalls eine unendlich hohe Selektivität auf und ist deshalb ein ideales theoretisches Hilfsmittel der Spektralanalyse.
+
The&nbsp; '''Fourier transform'''&nbsp; according to the previous description in chapter&nbsp; [[Signal_Representation/Fourier_Transform_and_Its_Inverse|Aperiodic Signals &ndash; Pulses]]&nbsp;has an infinitely high selectivity due to the unlimited extension of the integration interval and is therefore an ideal theoretical tool of spectral analysis.
  
Sollen die Spektralanteile&nbsp; $X(f)$&nbsp; einer Zeitfunktion&nbsp; $x(t)$&nbsp; numerisch ermittelt werden, so sind die allgemeinen Transformationsgleichungen
+
If the spectral components&nbsp; $X(f)$&nbsp; of a time function&nbsp; $x(t)$&nbsp; are to be determined numerically, the general transformation equations are
 
   
 
   
 
:$$\begin{align*}X(f) & =  \int_{-\infty
 
:$$\begin{align*}X(f) & =  \int_{-\infty
  }^{+\infty}x(t) \cdot {\rm e}^{-{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} 2 \pi f t}\hspace{0.1cm} {\rm d}t\hspace{0.5cm} \Rightarrow\hspace{0.5cm} \text{Hintransformation}\hspace{0.7cm} \Rightarrow\hspace{0.5cm} \text{Erstes Fourierintegral}
+
  }^{+\infty}x(t) \cdot {\rm e}^{-{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} 2 \pi f t}\hspace{0.1cm} {\rm d}t\hspace{0.5cm} \Rightarrow\hspace{0.5cm} \text{Transform}\hspace{0.7cm} \Rightarrow\hspace{0.5cm} \text{first  Fourier integral}
 
  \hspace{0.05cm},\\
 
  \hspace{0.05cm},\\
 
x(t) & =  \int_{-\infty
 
x(t) & =  \int_{-\infty
 
  }^{+\infty}\hspace{-0.15cm}X(f) \cdot {\rm e}^{\hspace{0.05cm}+{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} 2 \pi f t}\hspace{0.1cm} {\rm d}f\hspace{0.35cm} \Rightarrow\hspace{0.5cm}
 
  }^{+\infty}\hspace{-0.15cm}X(f) \cdot {\rm e}^{\hspace{0.05cm}+{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} 2 \pi f t}\hspace{0.1cm} {\rm d}f\hspace{0.35cm} \Rightarrow\hspace{0.5cm}
\text{Rücktransformation}\hspace{0.4cm} \Rightarrow\hspace{0.5cm} \text{Zweites Fourierintegral}
+
\text{Back Transform}\hspace{0.4cm} \Rightarrow\hspace{0.5cm} \text{second Fourier integral}
 
  \hspace{0.05cm}\end{align*}$$
 
  \hspace{0.05cm}\end{align*}$$
  
aus zwei Gründen ungeeignet:
+
unsuitable for two reasons:
*Die Gleichungen gelten ausschließlich für zeitkontinuierliche Signale. Mit Digitalrechnern oder Signalprozessoren kann man jedoch nur zeitdiskrete Signale verarbeiten.
+
*The equations apply exclusively to time-continuous signals. With digital computers or signal processors, however, one can only process time-discrete signals.
*Für eine numerische Auswertung der beiden Fourierintegrale ist es erforderlich, das jeweilige Integrationsintervall auf einen endlichen Wert zu begrenzen.
+
*For a numerical evaluation of the two Fourier integrals it is necessary to limit the respective integration interval to a finite value.
  
  
 
{{BlaueBox|TEXT=
 
{{BlaueBox|TEXT=
$\text{Daraus ergibt sich folgende Konsequenz:}$&nbsp;
+
$\text{This leads to the following consequence:}$&nbsp;
  
Ein&nbsp; '''kontinuierliches Signal'''&nbsp; muss vor der numerischen Bestimmung seiner Spektraleigenschaften zwei Prozesse durchlaufen, nämlich
+
A&nbsp; '''continuous signal'''&nbsp; must undergo two processes before the numerical determination of its spectral properties, viz.
*den der&nbsp; '''Abtastung'''&nbsp; zur Diskretisierung, und
+
*that of&nbsp; '''sampling'''&nbsp; for discretisation, and
*den der&nbsp; '''Fensterung'''&nbsp; zur Begrenzung des Integrationsintervalls.}}
+
*that of&nbsp; '''windowing'''&nbsp; to limit the integration interval.}}
  
  
Im Folgenden wird ausgehend von einer aperiodischen Zeitfunktion&nbsp; $x(t)$&nbsp; und dem dazugehörigen Fourierspektrum&nbsp; $X(f)$&nbsp; eine für die Rechnerverarbeitung geeignete zeit– und frequenzdiskrete Beschreibung schrittweise entwickelt.
+
In the following, starting from an aperiodic time function&nbsp; $x(t)$&nbsp; and the corresponding Fourier spectrum&nbsp; $X(f)$&nbsp; a time- and frequency-discrete description suitable for computer processing is developed step by step.
  
  
==Zeitdiskretisierung &ndash; Periodifizierung im Frequenzbereich==
+
 
 +
==Time Discretisation &ndash; Periodisation in the Frequency Domain==
 
<br>
 
<br>
Die folgenden Grafiken zeigen einheitlich links den Zeitbereich und rechts den Frequenzbereich. Ohne Einschränkung der Allgemeingültigkeit sind&nbsp; $x(t)$&nbsp; und&nbsp; $X(f)$&nbsp; jeweils reell und gaußförmig.
+
The following graphs show uniformly the time domain on the left and the frequency domain on the right. Without limiting generality,&nbsp; $x(t)$&nbsp; and&nbsp; $X(f)$&nbsp; are each real and Gaussian.
  
[[File:P_ID1132__Sig_T_5_1_S2_neu.png|center|frame|Diskretisierung im Zeitbereich – Periodifizierung im Frequenzbereich]]
+
[[File:P_ID1132__Sig_T_5_1_S2_neu.png|center|frame| Time Discretisation - Periodisation in the Frequency Domain]]
  
Entsprechend dem Kapitel&nbsp; [[Signal_Representation/Time_Discrete_Signal_Representation|Zeitdiskrete Signaldarstellung]]&nbsp; kann man die Abtastung des Zeitsignals&nbsp; $x(t)$&nbsp; durch die Multiplikation mit einem Diracpuls&nbsp; $p_{\delta}(t)$&nbsp; beschreiben. Es ergibt sich das im Abstand&nbsp; $T_{\rm A}$&nbsp; abgetastete Zeitsignal
+
According to the chapter&nbsp; [[Signal_Representation/Time_Discrete_Signal_Representation|Time Discrete Signal Representation]]&nbsp; one can describe the sampling of the time signal&nbsp; $x(t)$&nbsp; by multiplying it by a Dirac pulse&nbsp; $p_{\delta}(t)$&nbsp;. The result is the time signal sampled at a distance&nbsp; $T_{\rm A}$&nbsp;
 
   
 
   
 
:$${\rm A}\{x(t)\} =  \sum_{\nu = - \infty }^{+\infty} T_{\rm A} \cdot x(\nu \cdot T_{\rm A})\cdot
 
:$${\rm A}\{x(t)\} =  \sum_{\nu = - \infty }^{+\infty} T_{\rm A} \cdot x(\nu \cdot T_{\rm A})\cdot
Line 48: Line 49:
 
  )\hspace{0.05cm}.$$
 
  )\hspace{0.05cm}.$$
  
Dieses abgetastete Signal&nbsp; $\text{A}\{ x(t)\}$&nbsp; transformieren wir nun in den Frequenzbereich. Der Multiplikation des Diracpulses&nbsp; $p_{\delta}(t)$&nbsp; mit&nbsp; $x(t)$&nbsp; entspricht im Frequenzbereich die Faltung von&nbsp; $P_{\delta}(f)$&nbsp; mit&nbsp; $X(f)$. Es ergibt sich das periodifizierte Spektrum&nbsp; $\text{P}\{ X(f)\}$, wobei&nbsp; $f_{\rm P}$&nbsp; die Frequenzperiode der Funktion&nbsp; $\text{P}\{ X(f)\}$&nbsp; angibt:
+
We now transform this sampled signal&nbsp; $\text{A}\{ x(t)\}$&nbsp; into the frequency domain. The multiplication of the Dirac pulse&nbsp; $p_{\delta}(t)$&nbsp; with&nbsp; $x(t)$&nbsp; corresponds in the frequency domain to the convolution of&nbsp; $P_{\delta}(f)$&nbsp; with&nbsp; $X(f)$. The result is the periodised spectrum&nbsp; $\text{P}\{ X(f)\}$, where&nbsp; $f_{\rm P}$&nbsp; indicates the frequency period of the function&nbsp; $\text{P}\{ X(f)\}$&nbsp;:
 
   
 
   
 
:$${\rm A}\{x(t)\} \hspace{0.2cm}\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\, \hspace{0.2cm} {\rm P}\{X(f)\} =  \sum_{\mu = - \infty }^{+\infty}
 
:$${\rm A}\{x(t)\} \hspace{0.2cm}\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\, \hspace{0.2cm} {\rm P}\{X(f)\} =  \sum_{\mu = - \infty }^{+\infty}
  X (f- \mu \cdot f_{\rm P} )\hspace{0.5cm} {\rm mit }\hspace{0.5cm}f_{\rm
+
  X (f- \mu \cdot f_{\rm P} )\hspace{0.5cm} {\rm with }\hspace{0.5cm}f_{\rm
 
  P}= {1}/{T_{\rm A}}\hspace{0.05cm}.$$
 
  P}= {1}/{T_{\rm A}}\hspace{0.05cm}.$$
  
Dieser Zusammenhang wurde ebenfalls bereits im Kapitel&nbsp; [[Signal_Representation/Time_Discrete_Signal_Representation|Zeitdiskrete Signaldarstellung]]&nbsp;  hergeleitet, jedoch mit etwas anderer Nomenklatur:
+
This relation was also already derived in the chapter&nbsp; [[Signal_Representation/Time_Discrete_Signal_Representation|Time Discrete Signal Representation]]&nbsp;  but with slightly different nomenclature:
*Das abgetastete Signal bezeichnen wir nun mit&nbsp; $\text{A}\{ x(t)\}$&nbsp; anstelle von&nbsp; $x_{\rm A}(t)$.
+
*We now denote the sampled signal by&nbsp; $\text{A}\{ x(t)\}$&nbsp; instead of&nbsp; $x_{\rm A}(t)$.
* Die&nbsp; '''Frequenzperiode'''&nbsp; wird nun mit&nbsp; $f_{\rm P} = 1/T_{\rm A}$&nbsp; anstelle von&nbsp; $f_{\rm A} = 1/T_{\rm A}$&nbsp; bezeichnet.
+
* The&nbsp; '''frequency period'''&nbsp; is now denoted by&nbsp; $f_{\rm P} = 1/T_{\rm A}$&nbsp; instead of&nbsp; $f_{\rm A} = 1/T_{\rm A}$&nbsp;.
  
  
Diese Nomenklaturänderungen werden auf den folgenden Seiten begründet.
+
These nomenclature changes are justified on the following pages.
  
Die obige Grafik zeigt den hier beschriebenen Funktionalzusammenhang. Es ist anzumerken:
+
The graph above shows the functional relationship described here. It should be noted:
*Die Frequenzperiode&nbsp; $f_{\rm P}$&nbsp; wurde hier bewusst klein gewählt, so dass die Überlappung der zu summierenden Spektren deutlich zu erkennen ist.
+
*The frequency period&nbsp; $f_{\rm P}$&nbsp; has been deliberately chosen to be small here so that the overlap of the spectra to be summed can be clearly seen.
*In der Praxis sollte&nbsp; $f_{\rm P}$&nbsp; aufgrund des Abtasttheorems mindestens doppelt so groß sein wie die größte im Signal&nbsp; $x(t)$&nbsp; enthaltene Frequenz.
+
*In practice&nbsp; $f_{\rm P}$&nbsp; should be at least twice as large as the largest frequency contained in the signal&nbsp; $x(t)$&nbsp; due to the sampling theorem.
*Ist dies nicht erfüllt, so muss mit&nbsp; '''Aliasing'''&nbsp; gerechnet werden – siehe Kapitel&nbsp; [[Signal_Representation/Possible_Errors_When_Using_DFT|Fehlermöglichkeiten bei Anwendung der DFT]].
+
*If this is not fulfilled, then&nbsp; '''Aliasing'''&nbsp; must be reckoned with - see chapter&nbsp; [[Signal_Representation/Possible_Errors_When_Using_DFT|Possible Errors When Using DFT]].
  
  
==Frequenzdiskretisierung &ndash; Periodifizierung im Zeitbereich==
+
==Frequency Discretisation &ndash; Periodisation in the Time Domain ==
 
<br>
 
<br>
Die Diskretisierung von&nbsp; $X(f)$&nbsp; lässt sich ebenfalls durch eine Multiplikation mit einem Diracpuls beschreiben. Es ergibt sich das im Abstand&nbsp; $f_{\rm A}$&nbsp; abgetastete Spektrum:
+
The discretisation of&nbsp; $X(f)$&nbsp; can also be described by a multiplication with a Dirac comb. The result is the spectrum sampled in the distance&nbsp; $f_{\rm A}$&nbsp;:  
 
 
:$${\rm A}\{X(f)\} =  X(f) \cdot  \sum_{\mu = - \infty }^{+\infty}
 
:$${\rm A}\{X(f)\} =  X(f) \cdot  \sum_{\mu = - \infty }^{+\infty}
 
  f_{\rm A} \cdot \delta (f- \mu \cdot f_{\rm A } ) =  \sum_{\mu = - \infty }^{+\infty}
 
  f_{\rm A} \cdot \delta (f- \mu \cdot f_{\rm A } ) =  \sum_{\mu = - \infty }^{+\infty}
 
  f_{\rm A} \cdot X(\mu \cdot f_{\rm A } ) \cdot\delta (f- \mu \cdot f_{\rm A } )\hspace{0.05cm}.$$
 
  f_{\rm A} \cdot X(\mu \cdot f_{\rm A } ) \cdot\delta (f- \mu \cdot f_{\rm A } )\hspace{0.05cm}.$$
  
Transformiert man den hier verwendeten Frequenz–Diracpuls $($mit Impulsgewichten&nbsp; $f_{\rm A})$&nbsp; in den Zeitbereich, so erhält man mit&nbsp; $T_{\rm P} = 1/f_{\rm A}$:
+
If one transforms the frequency-dirac comb $($with pulse weights&nbsp; $f_{\rm A})$&nbsp; used here into the time domain, one obtains with&nbsp; $T_{\rm P} = 1/f_{\rm A}$:
 
   
 
   
 
:$$\sum_{\mu = - \infty }^{+\infty}
 
:$$\sum_{\mu = - \infty }^{+\infty}
Line 82: Line 82:
 
   \delta (t- \nu \cdot T_{\rm P } ) \hspace{0.05cm}.$$
 
   \delta (t- \nu \cdot T_{\rm P } ) \hspace{0.05cm}.$$
  
Die Multiplikation mit&nbsp; $X(f)$&nbsp; entspricht im Zeitbereich der Faltung mit&nbsp; $x(t)$. Man erhält das im Abstand&nbsp; $T_{\rm P}$&nbsp; periodifizierte Signal&nbsp; $\text{P}\{ x(t)\}$:
+
The multiplication with&nbsp; $X(f)$&nbsp; corresponds in the time domain to the convolution with&nbsp; $x(t)$. One obtains the signal&nbsp; $T_{\rm P}$&nbsp; periodified in the distance&nbsp; $\text{P}\{ x(t)\}$:
 
   
 
   
 
:$${\rm A}\{X(f)\} \hspace{0.2cm}\bullet\!\!-\!\!\!-\!\!\!-\!\!\circ\, \hspace{0.2cm}
 
:$${\rm A}\{X(f)\} \hspace{0.2cm}\bullet\!\!-\!\!\!-\!\!\!-\!\!\circ\, \hspace{0.2cm}
Line 89: Line 89:
 
   x (t- \nu \cdot T_{\rm P } ) \hspace{0.05cm}.$$
 
   x (t- \nu \cdot T_{\rm P } ) \hspace{0.05cm}.$$
  
[[File:P_ID1134__Sig_T_5_1_S3_neu.png|right|frame|Diskretisierung im Frequenzbereich – Periodifizierung im Zeitbereich]]
+
[[File:P_ID1134__Sig_T_5_1_S3_neu.png|right|frame|Frequency Discretisation &ndash; Periodisation in the Time Domain]]
 
{{GraueBox|TEXT=
 
{{GraueBox|TEXT=
$\text{Beispiel 1:}$&nbsp;
+
$\text{Example 1:}$&nbsp;
Dieser Zusammenhang ist in der Grafik veranschaulicht:  
+
This correlation is illustrated in the graph:  
*Aufgrund der groben Frequenzrasterung ergibt sich in diesem Beispiel für die Zeitperiode&nbsp; $T_{\rm P}$&nbsp; ein relativ kleiner Wert.
+
*Due to the coarse frequency rastering, this example results in a relatively small value for the time period&nbsp; $T_{\rm P}$&nbsp;.
 
 
  
* Deshalb  unterscheidet sich das (blaue) periodifizierte Zeitsignal&nbsp; $\text{P}\{ x(t)\}$&nbsp; aufgrund von Überlappungen deutlich von&nbsp; $x(t)$.}}
 
  
 +
* Therefore, the (blue) periodised time signal&nbsp; $\text{P}\{ x(t)\}$&nbsp; differs significantly from&nbsp; $x(t)$.}} due to overlaps.
  
==Finite Signaldarstellung==
+
==Finite Signal Representation==
 
<br>
 
<br>
[[File:P_ID1135__Sig_T_5_1_S4_neu.png|right|frame|Finite Signale der Diskreten Fouriertransformation (DFT)]]
+
[[File:P_ID1135__Sig_T_5_1_S4_neu.png|right|frame|Finite Signals of the Discrete Fourier Transform (DFT)]]
Zur so genannten&nbsp; ''finiten Signaldarstellung''&nbsp; kommt man,  
+
One arrives at the so-called&nbsp; ''finite signal representation''&nbsp;,  
*wenn sowohl die Zeitfunktion&nbsp; $x(t)$  
+
*if both the time function&nbsp; $x(t)$  
*als auch die Spektralfunktion&nbsp; $X(f)$  
+
*and the spectral function&nbsp; $X(f)$  
  
  
ausschließlich durch ihre Abtastwerte angegeben werden.
+
are specified exclusively by their sample values.
 
<br clear=all>
 
<br clear=all>
Die Grafik ist wie folgt zu interpretieren:
+
The graph is to be interpreted as follows:
*Im linken Bild blau eingezeichnet ist die Funktion&nbsp; $\text{A}\{ \text{P}\{ x(t)\}\}$. Diese ergibt sich durch Abtastung der periodifizierten Zeitfunktion&nbsp; $\text{P}\{ x(t)\}$&nbsp; mit äquidistanten Diracimpulsen im Abstand&nbsp; $T_{\rm A} = 1/f_{\rm P}$.
+
*In the left picture, drawn in blue, is the function&nbsp; $\text{A}\{ \text{P}\{ x(t)\}\}$. This results from sampling the periodified time function&nbsp; $\text{P}\{ x(t)\}$&nbsp; with equidistant dirac pulses at a distance&nbsp; $T_{\rm A} = 1/f_{\rm P}$.
*Im rechten Bild grün eingezeichnet ist die Funktion&nbsp; $\text{P}\{ \text{A}\{ X(f)\}\}$. Diese ergibt sich durch Periodifizierung $($mit&nbsp; $f_{\rm P})$&nbsp; der abgetasteten Spektralfunktion&nbsp; $\{ \text{A}\{ X(f)\}\}$.  
+
*In the right picture the function is drawn in green&nbsp; $\text{P}\{ \text{A}\{ X(f)\}\}$. This results from periodisation $($with&nbsp; $f_{\rm P})$&nbsp; of the sampled spectral function&nbsp; $\{ \text{A}\{ X(f)\}\}$.  
*Zwischen dem blauen finiten Signal (linke Skizze) und dem grünen finiten Signal (rechte Skizze) besteht eine Fourierkorrespondenz, und zwar folgende:
+
*There is a Fourier correspondence between the blue finite signal (left sketch) and the green finite signal (right sketch), as follows:
 
   
 
   
 
:$${\rm A}\{{\rm P}\{x(t)\}\} \hspace{0.2cm}\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\, \hspace{0.2cm} {\rm P}\{{\rm A}\{X(f)\}\} \hspace{0.05cm}.$$
 
:$${\rm A}\{{\rm P}\{x(t)\}\} \hspace{0.2cm}\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\, \hspace{0.2cm} {\rm P}\{{\rm A}\{X(f)\}\} \hspace{0.05cm}.$$
  
*Die Diraclinien der periodischen Fortsetzung&nbsp; $\text{P}\{ \text{A}\{ X(f)\}\}$&nbsp; der abgetasteten Spektralfunktion fallen allerdings nur dann in das gleiche Frequenzraster wie diejenigen von&nbsp; $\text{A}\{ X(f)\}$, wenn die Frequenzperiode&nbsp; $f_{\rm P}$&nbsp; ein ganzzahliges Vielfaches&nbsp; $(N)$&nbsp; des Frequenzabtastabstandes&nbsp; $f_{\rm A}$&nbsp; ist.
+
*The diraclines of the periodic continuation&nbsp; $\text{P}\{ \text{A}\{ X(f)\}\}$&nbsp; of the sampled spectral function, however, only fall into the same frequency grid as those of&nbsp; $\text{A}\{ X(f)\}$ if the frequency period&nbsp; $f_{\rm P}$&nbsp; is an integer multiple&nbsp; $(N)$&nbsp; of the frequency sampling interval&nbsp; $f_{\rm A}$&nbsp;.
*Deshalb muss bei Anwendung der finiten Signaldarstellung stets die folgende Bedingung erfüllt sein, wobei die natürliche Zahl&nbsp; $N$&nbsp; in der Praxis meist eine Zweierpotenz ist&nbsp; (obiger Grafik liegt der Wert&nbsp; $N = 8$&nbsp; zugrunde):
+
*Therefore, when using the finite signal representation, the following condition must always be fulfilled, where the natural number&nbsp; $N$&nbsp; in practice is usually a power of two&nbsp; (the above graph is based on the value&nbsp; $N = 8$&nbsp;):
 
   
 
   
 
:$$f_{\rm P} = N \cdot f_{\rm A} \hspace{0.5cm} \Rightarrow\hspace{0.5cm} {1}/{T_{\rm A}}= N \cdot f_{\rm A} \hspace{0.5cm} \Rightarrow\hspace{0.5cm}
 
:$$f_{\rm P} = N \cdot f_{\rm A} \hspace{0.5cm} \Rightarrow\hspace{0.5cm} {1}/{T_{\rm A}}= N \cdot f_{\rm A} \hspace{0.5cm} \Rightarrow\hspace{0.5cm}
 
  N \cdot f_{\rm A}\cdot T_{\rm A} = 1\hspace{0.05cm}.$$
 
  N \cdot f_{\rm A}\cdot T_{\rm A} = 1\hspace{0.05cm}.$$
  
*Bei Einhaltung der Bedingung&nbsp; $N \cdot f_{\rm A} \cdot T_{\rm A} = 1$&nbsp; ist die Reihenfolge von Periodifizierung und Abtastung vertauschbar. Somit gilt:
+
*If the condition&nbsp; $N \cdot f_{\rm A} \cdot T_{\rm A} = 1$&nbsp; the order of periodization and sampling is interchangeable. Thus:
 
   
 
   
 
:$${\rm A}\{{\rm P}\{x(t)\}\} = {\rm P}\{{\rm A}\{x(t)\}\}\hspace{0.2cm}\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\, \hspace{0.2cm}
 
:$${\rm A}\{{\rm P}\{x(t)\}\} = {\rm P}\{{\rm A}\{x(t)\}\}\hspace{0.2cm}\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\, \hspace{0.2cm}
Line 128: Line 127:
  
 
{{BlaueBox|TEXT=
 
{{BlaueBox|TEXT=
$\text{Fazit:}$&nbsp;
+
$\text{Conclusion:}$&nbsp;
*Die Zeitfunktion&nbsp; $\text{P}\{ \text{A}\{ x(t)\}\}$&nbsp; besitzt die Periode&nbsp; $T_{\rm P} = N \cdot T_{\rm A}$.  
+
*The time function&nbsp; $\text{P}\{ \text{A}\{ x(t)\}\}$&nbsp; has the period&nbsp; $T_{\rm P} = N \cdot T_{\rm A}$.  
*Die Periode im Frequenzbereich ist&nbsp; $f_{\rm P} = N \cdot f_{\rm A}$.  
+
*The period in the frequency domain is&nbsp; $f_{\rm P} = N \cdot f_{\rm A}$.  
*Zur Beschreibung des diskretisierten Zeit– und Frequenzverlaufs reichen somit jeweils&nbsp; $N$&nbsp; '''komplexe Zahlenwerte''' in Form von Impulsgewichten aus.}}
+
*For the description of the discretised time and frequency response in each case&nbsp; $N$&nbsp; '''complex numerical values''' in the form of pulse weights are thus sufficient.}}
  
  
 
{{GraueBox|TEXT=
 
{{GraueBox|TEXT=
$\text{Beispiel 2:}$&nbsp;
+
$\text{Example 2:}$&nbsp;
Es liegt ein zeitbegrenztes (impulsartiges) Signal&nbsp; $x(t)$&nbsp; in abgetasteter Form vor, wobei  der Abstand zweier Abtastwerte&nbsp; $T_{\rm A} = 1\, {\rm &micro; s}$&nbsp; beträgt:  
+
A time-limited (pulse-like) signal&nbsp; $x(t)$&nbsp; is present in sampled form, where the distance between two samples&nbsp; $T_{\rm A} = 1\, {\rm &micro; s}$&nbsp; is:  
*Nach einer diskreten Fouriertransformation mit&nbsp; $N = 512$&nbsp; liegt das Spektrum&nbsp; $X(f)$&nbsp; in Form von Abtastwerten im Abstand&nbsp; $f_{\rm A} = (N \cdot T_{\rm A})^{–1} \approx 1.953\,\text{kHz} $&nbsp; vor.  
+
*After a discrete Fourier transform with&nbsp; $N = 512$&nbsp; the spectrum&nbsp; $X(f)$&nbsp; is in the form of samples spaced&nbsp; $f_{\rm A} = (N \cdot T_{\rm A})^{-1} \approx 1.953\,\text{kHz} $&nbsp; before.  
*Vergrößert man den DFT&ndash;Parameter auf&nbsp; $N= 2048$, so ergibt sich ein (vierfach) feineres Frequenzraster mit&nbsp; $f_{\rm A} \approx 488\,\text{Hz}$.}}
+
*Increasing the DFT&ndash;parameter to&nbsp; $N= 2048$ results in a (four times) finer frequency grid with&nbsp; $f_{\rm A} \approx 488\,\text{Hz}$.}}
  
  
==Von der kontinuierlichen zur diskreten Fouriertransformation==
+
==From the Continuous to the Discrete Fourier Transform==
 
<br>
 
<br>
Aus dem herkömmlichen&nbsp; [[Signal_Representation/Fourier_Transform_and_Its_Inverse#Das_erste_Fourierintegral|ersten Fourierintegral]]
+
From the conventional&nbsp;[[Signal_Representation/Fourier_Transform_and_Its_Inverse#Das_erste_Fourierintegral|first  Fourier integral]]
 
   
 
   
 
:$$X(f) =\int_{-\infty
 
:$$X(f) =\int_{-\infty
 
  }^{+\infty}x(t) \cdot {\rm e}^{-{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} 2 \pi \hspace{0.05cm}\cdot \hspace{0.05cm} f  \hspace{0.05cm}\cdot \hspace{0.05cm}t}\hspace{0.1cm} {\rm d}t$$
 
  }^{+\infty}x(t) \cdot {\rm e}^{-{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} 2 \pi \hspace{0.05cm}\cdot \hspace{0.05cm} f  \hspace{0.05cm}\cdot \hspace{0.05cm}t}\hspace{0.1cm} {\rm d}t$$
  
entsteht durch Diskretisierung&nbsp; $(\text{d}t \to T_{\rm A}$,&nbsp; $t \to \nu \cdot T_{\rm A}$,&nbsp; $f \to \mu \cdot f_{\rm A}$,&nbsp; $T_{\rm A} \cdot f_{\rm A} = 1/N)$&nbsp; die abgetastete und periodifizierte Spektralfunktion
+
arises from discretisation&nbsp; $(\text{d}t \to T_{\rm A}$,&nbsp; $t \to \nu \cdot T_{\rm A}$,&nbsp; $f \to \mu \cdot f_{\rm A}$,&nbsp; $T_{\rm A} \cdot f_{\rm A} = 1/N)$&nbsp; the sampled and periodised spectral function
 
   
 
   
 
:$${\rm P}\{X(\mu \cdot f_{\rm A})\} = T_{\rm A} \cdot \sum_{\nu = 0 }^{N-1}
 
:$${\rm P}\{X(\mu \cdot f_{\rm A})\} = T_{\rm A} \cdot \sum_{\nu = 0 }^{N-1}
Line 154: Line 153:
 
  \cdot \hspace{0.05cm}\mu /N} \hspace{0.05cm}.$$
 
  \cdot \hspace{0.05cm}\mu /N} \hspace{0.05cm}.$$
  
Es ist berücksichtigt, dass aufgrund der Diskretisierung jeweils die periodifizierten Funktionen einzusetzen sind.  
+
It is taken into account that due to the discretisation, the periodised functions are to be used in each case.  
  
Aus Gründen einer vereinfachten Schreibweise nehmen wir nun die folgenden Substitutionen vor:
+
For reasons of simplified notation, we now make the following substitutions:
*Die&nbsp; $N$&nbsp; '''Zeitbereichskoeffizienten'''&nbsp; seien mit der Laufvariablen&nbsp; $\nu = 0$, ... , $N - 1$:
+
*The&nbsp; $N$&nbsp; '''time-domain coefficients''''&nbsp; are with the iterating variable&nbsp; $\nu = 0$, ... , $N - 1$:
:$$d(\nu) =
+
:$$d(\nu) =.
 
   {\rm P}\left\{x(t)\right\}{\big|}_{t \hspace{0.05cm}= \hspace{0.05cm}\nu \hspace{0.05cm}\cdot \hspace{0.05cm}T_{\rm A}}\hspace{0.05cm}.$$
 
   {\rm P}\left\{x(t)\right\}{\big|}_{t \hspace{0.05cm}= \hspace{0.05cm}\nu \hspace{0.05cm}\cdot \hspace{0.05cm}T_{\rm A}}\hspace{0.05cm}.$$
*Die&nbsp; $N$&nbsp; '''Frequenzbereichskoeffizienten'''&nbsp; seien mit der Laufvariablen&nbsp; $\mu = 0,$ ... , $N$ – 1:
+
*Let&nbsp; $N$&nbsp; '''frequency domain coefficients''''&nbsp; be associated with the running variable&nbsp; $\mu = 0,$ ... , $N$ – 1:
 
:$$D(\mu) = f_{\rm A} \cdot
 
:$$D(\mu) = f_{\rm A} \cdot
 
   {\rm P}\left\{X(f)\right\}{\big|}_{f \hspace{0.05cm}= \hspace{0.05cm}\mu \hspace{0.05cm}\cdot \hspace{0.05cm}f_{\rm A}}\hspace{0.05cm}.$$
 
   {\rm P}\left\{X(f)\right\}{\big|}_{f \hspace{0.05cm}= \hspace{0.05cm}\mu \hspace{0.05cm}\cdot \hspace{0.05cm}f_{\rm A}}\hspace{0.05cm}.$$
*Abkürzend wird für den von&nbsp; $N$&nbsp; abhängigen&nbsp; '''komplexen Drehfaktor'''&nbsp; geschrieben:
+
*Abbreviation is written for the from&nbsp; $N$&nbsp; dependent&nbsp; '''complex rotation factor''''&nbsp;:
:$$w = {\rm e}^{-{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} 2 \pi /N}
+
:$$w = {\rm e}^{-{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} 2 \pi /N}
  = \cos \left( {2 \pi}/{N}\right)-{\rm j} \cdot \sin \left( {2 \pi}/{N}\right)
+
  = \cos \left( {2 \pi}/{N}\right)-{\rm j} \cdot \sin \left( {2 \pi}/{N}\right)
 
  \hspace{0.05cm}.$$  
 
  \hspace{0.05cm}.$$  
  
[[File:P_ID2730__Sig_T_5_1_S5_neu.png|right|frame|Zur Definition der Diskreten Fouriertransformation (DFT) mit&nbsp; $N=8$]]
+
[[File:P_ID2730__Sig_T_5_1_S5_neu.png|right|frame|On Defining the Discrete Fourier Transform (DFT) with&nbsp; $N=8$]]
 
{{BlaueBox|TEXT=
 
{{BlaueBox|TEXT=
 
$\text{Definition:}$&nbsp;
 
$\text{Definition:}$&nbsp;
  
Unter dem Begriff&nbsp; '''Diskrete Fouriertransformation'''&nbsp; (kurz '''DFT''')&nbsp; versteht man die Berechnung der&nbsp; $N$&nbsp; Spektralkoeffizienten&nbsp; $D(\mu)$&nbsp; aus den&nbsp; $N$&nbsp; Signalkoeffizienten&nbsp; $d(\nu)$:
+
The term&nbsp; '''Discrete Fourier Transform'''&nbsp; (in short '''DFT''')&nbsp; means the calculation of the&nbsp; $N$&nbsp; spectral coefficients&nbsp; $D(\mu)$&nbsp; from the&nbsp; $N$&nbsp; signal coefficients&nbsp; $d(\nu)$:
 
   
 
   
 
:$$D(\mu) = \frac{1}{N} \cdot \sum_{\nu = 0 }^{N-1}
 
:$$D(\mu) = \frac{1}{N} \cdot \sum_{\nu = 0 }^{N-1}
 
   d(\nu)\cdot  {w}^{\hspace{0.05cm}\nu \hspace{0.07cm} \cdot \hspace{0.05cm}\mu} \hspace{0.05cm}. $$
 
   d(\nu)\cdot  {w}^{\hspace{0.05cm}\nu \hspace{0.07cm} \cdot \hspace{0.05cm}\mu} \hspace{0.05cm}. $$
  
In der Grafik erkennt man an einem Beispiel
+
In the diagram you can see
*die&nbsp; $N = 8$&nbsp; Signalkoeffizienten&nbsp; $d(\nu)$&nbsp; an der blauen Füllung,  
+
*the&nbsp; $N = 8$&nbsp; signal coefficients&nbsp; $d(\nu)$&nbsp; by the blue filling,  
*die&nbsp; $N = 8$&nbsp; Spektralkoeffizienten&nbsp; $D(\mu)$&nbsp; an der grünen Füllung.}}
+
*the&nbsp; $N = 8$&nbsp; spectral coefficients&nbsp; $D(\mu)$&nbsp; at the green filling.}}
  
  
==Inverse Diskrete Fouriertransformation==
+
==Inverse Discrete Fourier Transform==
 
<br>
 
<br>
Die Inverse Diskrete Fouriertransformation (IDFT) beschreibt das&nbsp; [[Signal_Representation/Fourier_Transform_and_Its_Inverse#Das_zweite_Fourierintegral|zweite Fourierintegral]]
+
The Inverse Discrete Fourier Transform (IDFT) describes the&nbsp;   [[Signal_Representation/Fourier_Transform_and_Its_Inverse#Das_zweite_Fourierintegral|second Fourier integral]]
 
   
 
   
 
:$$\begin{align*}x(t) & =  \int_{-\infty
 
:$$\begin{align*}x(t) & =  \int_{-\infty
Line 190: Line 189:
 
  t}\hspace{0.1cm} {\rm d}f\end{align*}$$
 
  t}\hspace{0.1cm} {\rm d}f\end{align*}$$
  
in diskretisierter Form: &nbsp;  
+
in discretized form: &nbsp;  
 
:$$d(\nu) =
 
:$$d(\nu) =
 
   {\rm P}\left\{x(t)\right\}{\big|}_{t \hspace{0.05cm}= \hspace{0.05cm}\nu \hspace{0.05cm}\cdot \hspace{0.05cm}T_{\rm
 
   {\rm P}\left\{x(t)\right\}{\big|}_{t \hspace{0.05cm}= \hspace{0.05cm}\nu \hspace{0.05cm}\cdot \hspace{0.05cm}T_{\rm
 
   A}}\hspace{0.01cm}.$$
 
   A}}\hspace{0.01cm}.$$
  
[[File:P_ID2731__Sig_T_5_1_S6_neu.png|right|frame|Zur Definition der IDFT mit&nbsp; $N=8$]]
+
[[File:P_ID2731__Sig_T_5_1_S6_neu.png|right|frame|On the Definition of the IDFT with&nbsp; $N=8$]]
 
{{BlaueBox|TEXT=
 
{{BlaueBox|TEXT=
 
$\text{Definition:}$&nbsp;
 
$\text{Definition:}$&nbsp;
  
Unter dem Begriff&nbsp; '''Inverse Diskreten Fouriertransformation'''&nbsp; (kurz '''IDFT''')&nbsp; versteht man die Berechnung der Signalkoeffizienten&nbsp; $d(\nu)$&nbsp; aus den Spektralkoeffizienten&nbsp; $D(\mu)$:
+
The term&nbsp; '''Inverse Discrete Fourier Transform'''&nbsp; (in short '''IDFT''')&nbsp; means the calculation of the signal coefficients&nbsp; $d(\nu)$&nbsp; from the spectral coefficients&nbsp; $D(\mu)$:
 
   
 
   
:$$d(\nu) = \sum_{\mu = 0 }^{N-1}
+
:$$d(\nu) = \sum_{\mu = 0 }^{N-1}
  D(\mu) \cdot {w}^{-\nu \hspace{0.07cm} \cdot \hspace{0.05cm}\mu} \hspace{0.05cm}.$$
+
  D(\mu) \cdot {w}^{-\nu \hspace{0.07cm} \cdot \hspace{0.05cm}\mu} \hspace{0.05cm}.$$
  
Mit den Laufvariablen&nbsp; $\nu = 0,  \hspace{0.05cm}\text{...} \hspace{0.05cm}, N-1$&nbsp; und&nbsp; $\mu = 0,  \hspace{0.05cm}\text{...} \hspace{0.05cm}, N-1$&nbsp; gilt auch hier:
+
With the run variables&nbsp; $\nu = 0,  \hspace{0.05cm}\text{...} \hspace{0.05cm}, N-1$&nbsp; und&nbsp; $\mu = 0,  \hspace{0.05cm}\text{...} \hspace{0.05cm}, N-1$&nbsp; gilt auch hier:
 
:$$d(\nu) =
 
:$$d(\nu) =
 
   {\rm P}\left\{x(t)\right\}{\big \vert}_{t \hspace{0.05cm}= \hspace{0.05cm}\nu \hspace{0.05cm}\cdot \hspace{0.05cm}T_{\rm
 
   {\rm P}\left\{x(t)\right\}{\big \vert}_{t \hspace{0.05cm}= \hspace{0.05cm}\nu \hspace{0.05cm}\cdot \hspace{0.05cm}T_{\rm
Line 217: Line 216:
  
 
   
 
   
Ein Vergleich zwischen der&nbsp; [[Signal_Representation/Discrete_Fourier_Transform_(DFT)#Von_der_kontinuierlichen_zur_diskreten_Fouriertransformation|DFT]]&nbsp; und IDFT zeigt, dass genau der gleiche Algorithmus verwendet werden kann. Die einzigen Unterschiede der IDFT gegenüber der DFT sind:
+
A comparison between the&nbsp; [[Signal_Representation/Discrete_Fourier_Transform_(DFT)#Von_der_kontinuierlichen_zur_diskreten_Fouriertransformation|DFT]]&nbsp; and IDFT shows that exactly the same algorithm can be used. The only differences between IDFT and DFT are:
*Der Exponent des Drehfaktors ist mit unterschiedlichem Vorzeichen anzusetzen.
+
*The exponent of the rotation factor is to be applied with different sign.
*Bei der IDFT entfällt die Division durch&nbsp; $N$.
+
*In the IDFT, the division by&nbsp; $N$ is omitted.
  
  
==Interpretation von DFT und IDFT==
+
==Interpretation of DFT and IDFT==
 
<br>
 
<br>
Die Grafik zeigt die diskreten Koeffizienten im Zeit– und Frequenzbereich zusammen mit den periodifizierten zeitkontinuierlichen Funktionen.
+
The graph shows the discrete coefficients in the time and frequency domain together with the periodified time-continuous functions.
  
[[File:P_ID1136__Sig_T_5_1_S7_neu.png|center|frame|Zeit&ndash; und Frequenzbereichskoeffizienten der DFT]]
+
[[File:P_ID1136__Sig_T_5_1_S7_neu.png|center|frame|Time&ndash; and Frequency range Coefficients of the DFT]]
  
Bei Anwendung von DFT bzw. IDFT ist zu beachten:
+
When using DFT or IDFT, please note:
*Nach obigen Definitionen besitzen die DFT–Koeffizienten&nbsp; $d(ν)$&nbsp; und&nbsp; $D(\mu)$&nbsp; stets die Einheit der Zeitfunktion.  
+
*According to the above definitions, the DFT coefficients&nbsp; $d(ν)$&nbsp; and&nbsp; $D(\mu)$&nbsp; always have the unit of the time function.  
*Dividiert man&nbsp; $D(\mu)$&nbsp; durch&nbsp; $f_{\rm A}$, so erhält man den Spektralwert&nbsp; $X(\mu \cdot f_{\rm A})$.
+
*Dividing&nbsp; $D(\mu)$&nbsp; by&nbsp; $f_{\rm A}$, one obtains the spectral value&nbsp; $X(\mu \cdot f_{\rm A})$.
*Die Spektralkoeffizienten&nbsp; $D(\mu)$&nbsp; müssen stets komplex angesetzt werden, um auch ungerade Zeitfunktionen berücksichtigen zu können.
+
*The spectral coefficients&nbsp; $D(\mu)$&nbsp; must always be complex in order to be able to consider odd time functions.
*Um auch Bandpass–Signale im äquivalenten Tiefpass&ndash;Bereich transformieren zu können, verwendet man meist auch komplexe Zeitkoeffizienten&nbsp; $d(\nu)$.
+
*In order to be able to transform bandpass signals in the equivalent lowpass&ndash;range, one usually also uses complex time coefficients&nbsp; $d(\nu)$.
*Als Grundintervall für&nbsp; $\nu$&nbsp; und&nbsp; $\mu$&nbsp; definiert man meist – wie in obiger Grafik – den Bereich von&nbsp; $0$&nbsp; bis&nbsp; $N - 1$&nbsp; (gefüllte Kreise in der Grafik).  
+
*The basic interval for&nbsp; $\nu$&nbsp; and&nbsp; $\mu$&nbsp; is usually defined as the range from&nbsp; $0$&nbsp; to&nbsp; $N - 1$&nbsp; (filled circles in the graph).  
*Mit den komplexwertigen Zahlenfolgen&nbsp; $\langle \hspace{0.1cm}d(\nu)\hspace{0.1cm}\rangle = \langle \hspace{0.1cm}d(0), \hspace{0.05cm}\text{...} \hspace{0.05cm} , d(N-1) \hspace{0.1cm}\rangle$ &nbsp; sowie &nbsp; $\langle \hspace{0.1cm}D(\mu)\hspace{0.1cm}\rangle =   \langle \hspace{0.1cm}D(0), \hspace{0.05cm}\text{...} \hspace{0.05cm} , D(N-1) \hspace{0.1cm}\rangle$&nbsp; werden DFT und IDFT ähnlich wie die herkömmliche Fouriertransformation symbolisiert:
+
*With the complex-valued number sequences&nbsp; $\langle \hspace{0.1cm}d(\nu)\hspace{0.1cm}\rangle = \langle \hspace{0.1cm}d(0), \hspace{0.05cm}\text{...} \hspace{0.05cm} , d(N-1) \hspace{0.1cm}\rangle$ &nbsp; and &nbsp; $\langle \hspace{0.1cm}D(\mu)\hspace{0.1cm}\rangle = \langle \hspace{0.1cm}D(0), \hspace{0.05cm}\text{...} \hspace{0.05cm} , D(N-1) \hspace{0.1cm}\rangle$&nbsp; DFT and IDFT are symbolised similarly to the conventional Fourier transform:  
:$$\langle \hspace{0.1cm} D(\mu)\hspace{0.1cm}\rangle \hspace{0.2cm}\bullet\!\!-\!\!\!-(N)\!-\!\!\!-\!\!\hspace{0.05cm}\circ\, \hspace{0.2cm} \langle \hspace{0.1cm} d(\nu) \hspace{0.1cm}\rangle \hspace{0.05cm}.$$  
+
:$$\langle \hspace{0.1cm} D(\mu)\hspace{0.1cm}\rangle \hspace{0.2cm}\bullet\!\!-\!\!\!-(N)\!-\!\!\!-\!\!\hspace{0.05cm}\circ\, \hspace{0.2cm} \langle \hspace{0.1cm} d(\nu) \hspace{0.1cm}\rangle \hspace{0.05cm}.$$  
*Ist die Zeitfunktion&nbsp; $x(t)$&nbsp; bereits auf den Bereich&nbsp; $0 \le t \lt N \cdot T_{\rm A}$&nbsp; begrenzt, dann geben die von der IDFT ausgegebenen Zeitkoeffizienten direkt die Abtastwerte der Zeitfunktion an:  &nbsp; $d(\nu) = x(\nu \cdot T_{\rm A}).$
+
*If the time function&nbsp; $x(t)$&nbsp; is already limited to the range&nbsp; $0 \le t \lt N \cdot T_{\rm A}$&nbsp; then the time coefficients output by the IDFT directly give the samples of the time function:  &nbsp; $d(\nu) = x(\nu \cdot T_{\rm A}).$
*Ist&nbsp; $x(t)$&nbsp; gegenüber dem Grundintervall verschoben, so muss man die im&nbsp; $\text{Beispiel 3}$&nbsp; gezeigte Zuordnung zwischen&nbsp; $x(t)$&nbsp; und den Koeffizienten&nbsp; $d(\nu)$&nbsp; wählen.
+
*If&nbsp; $x(t)$&nbsp; is shifted with respect to the basic interval, one has to choose the association shown in&nbsp; $\text{Example 3}$&nbsp; between&nbsp; $x(t)$&nbsp; and the coefficients&nbsp; $d(\nu)$&nbsp;.
  
  
 
{{GraueBox|TEXT=
 
{{GraueBox|TEXT=
$\text{Beispiel 3:}$&nbsp;
+
$\text{Example 3:}$&nbsp;
 
Die obere Grafik zeigt den unsymmetrischen Dreieckimpuls&nbsp; $x(t)$, dessen absolute Breite kleiner ist als&nbsp; $T_{\rm P} = N \cdot T_{\rm A}$.  
 
Die obere Grafik zeigt den unsymmetrischen Dreieckimpuls&nbsp; $x(t)$, dessen absolute Breite kleiner ist als&nbsp; $T_{\rm P} = N \cdot T_{\rm A}$.  
  
[[File:P_ID1139__Sig_T_5_1_S7b_neu.png|right|frame|Zur Belegung der DFT-Koeffizienten  mit&nbsp; $N=8$]]
+
[[File:P_ID1139__Sig_T_5_1_S7b_neu.png|right|frame|On Assigning of the DFT Coefficients With&nbsp; $N=8$]]
  
Die untere Skizze zeigt die zugeordneten DFT–Koeffizienten $($gültig für&nbsp; $N = 8)$.
+
The sketch below shows the assigned DFT coefficients $($valid for&nbsp; $N = 8)$.
  
*Für&nbsp; $\nu = 0,\hspace{0.05cm}\text{...} \hspace{0.05cm} , N/2 = 4$&nbsp; gilt&nbsp; $d(\nu) = x(\nu \cdot T_{\rm A})$:
+
*For&nbsp; $\nu = 0,\hspace{0.05cm}\text{...} \hspace{0.05cm} , N/2 = 4$&nbsp; $d(\nu) = x(\nu \cdot T_{\rm A})$ holds:
  
 
:$$d(0) = x (0)\hspace{0.05cm}, \hspace{0.15cm}
 
:$$d(0) = x (0)\hspace{0.05cm}, \hspace{0.15cm}
Line 255: Line 254:
 
:$$d(3) = x (3T_{\rm A})\hspace{0.05cm}, \hspace{0.15cm}
 
:$$d(3) = x (3T_{\rm A})\hspace{0.05cm}, \hspace{0.15cm}
 
d(4) = x (4T_{\rm A})\hspace{0.05cm}.$$  
 
d(4) = x (4T_{\rm A})\hspace{0.05cm}.$$  
*Dagegen sind die Koeffizienten&nbsp; $d(5)$,&nbsp; $d(6)$&nbsp; und&nbsp; d$(7)$&nbsp; wie folgt zu setzen:
+
*On the other hand, the coefficients&nbsp; $d(5)$,&nbsp; $d(6)$&nbsp; and&nbsp; d$(7)$&nbsp; are to be set as follows:
  
 
:$$d(\nu) = x \big ((\nu\hspace{-0.05cm} - \hspace{-0.05cm} N ) \cdot T_{\rm  A}\big )  $$
 
:$$d(\nu) = x \big ((\nu\hspace{-0.05cm} - \hspace{-0.05cm} N ) \cdot T_{\rm  A}\big )  $$
Line 263: Line 262:
 
d(7) = x (-T_{\rm A})\hspace{0.05cm}.$$ }}
 
d(7) = x (-T_{\rm A})\hspace{0.05cm}.$$ }}
  
==Aufgaben zum Kapitel==
+
==Exercises for The Chapter==
 
<br>
 
<br>
 
[[Aufgaben:Exercise 5.2: Inverse Discrete Fourier Transform|Exercise 5.2: Inverse Discrete Fourier Transform]]
 
[[Aufgaben:Exercise 5.2: Inverse Discrete Fourier Transform|Exercise 5.2: Inverse Discrete Fourier Transform]]

Revision as of 21:24, 28 December 2020

Arguments for the Discrete Realisation of the Fourier Transform


The  Fourier transform  according to the previous description in chapter  Aperiodic Signals – Pulses has an infinitely high selectivity due to the unlimited extension of the integration interval and is therefore an ideal theoretical tool of spectral analysis.

If the spectral components  $X(f)$  of a time function  $x(t)$  are to be determined numerically, the general transformation equations are

$$\begin{align*}X(f) & = \int_{-\infty }^{+\infty}x(t) \cdot {\rm e}^{-{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} 2 \pi f t}\hspace{0.1cm} {\rm d}t\hspace{0.5cm} \Rightarrow\hspace{0.5cm} \text{Transform}\hspace{0.7cm} \Rightarrow\hspace{0.5cm} \text{first Fourier integral} \hspace{0.05cm},\\ x(t) & = \int_{-\infty }^{+\infty}\hspace{-0.15cm}X(f) \cdot {\rm e}^{\hspace{0.05cm}+{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} 2 \pi f t}\hspace{0.1cm} {\rm d}f\hspace{0.35cm} \Rightarrow\hspace{0.5cm} \text{Back Transform}\hspace{0.4cm} \Rightarrow\hspace{0.5cm} \text{second Fourier integral} \hspace{0.05cm}\end{align*}$$

unsuitable for two reasons:

  • The equations apply exclusively to time-continuous signals. With digital computers or signal processors, however, one can only process time-discrete signals.
  • For a numerical evaluation of the two Fourier integrals it is necessary to limit the respective integration interval to a finite value.


$\text{This leads to the following consequence:}$ 

continuous signal  must undergo two processes before the numerical determination of its spectral properties, viz.

  • that of  sampling  for discretisation, and
  • that of  windowing  to limit the integration interval.


In the following, starting from an aperiodic time function  $x(t)$  and the corresponding Fourier spectrum  $X(f)$  a time- and frequency-discrete description suitable for computer processing is developed step by step.


Time Discretisation – Periodisation in the Frequency Domain


The following graphs show uniformly the time domain on the left and the frequency domain on the right. Without limiting generality,  $x(t)$  and  $X(f)$  are each real and Gaussian.

Time Discretisation - Periodisation in the Frequency Domain

According to the chapter  Time Discrete Signal Representation  one can describe the sampling of the time signal  $x(t)$  by multiplying it by a Dirac pulse  $p_{\delta}(t)$ . The result is the time signal sampled at a distance  $T_{\rm A}$ 

$${\rm A}\{x(t)\} = \sum_{\nu = - \infty }^{+\infty} T_{\rm A} \cdot x(\nu \cdot T_{\rm A})\cdot \delta (t- \nu \cdot T_{\rm A} )\hspace{0.05cm}.$$

We now transform this sampled signal  $\text{A}\{ x(t)\}$  into the frequency domain. The multiplication of the Dirac pulse  $p_{\delta}(t)$  with  $x(t)$  corresponds in the frequency domain to the convolution of  $P_{\delta}(f)$  with  $X(f)$. The result is the periodised spectrum  $\text{P}\{ X(f)\}$, where  $f_{\rm P}$  indicates the frequency period of the function  $\text{P}\{ X(f)\}$ :

$${\rm A}\{x(t)\} \hspace{0.2cm}\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\, \hspace{0.2cm} {\rm P}\{X(f)\} = \sum_{\mu = - \infty }^{+\infty} X (f- \mu \cdot f_{\rm P} )\hspace{0.5cm} {\rm with }\hspace{0.5cm}f_{\rm P}= {1}/{T_{\rm A}}\hspace{0.05cm}.$$

This relation was also already derived in the chapter  Time Discrete Signal Representation  but with slightly different nomenclature:

  • We now denote the sampled signal by  $\text{A}\{ x(t)\}$  instead of  $x_{\rm A}(t)$.
  • The  frequency period  is now denoted by  $f_{\rm P} = 1/T_{\rm A}$  instead of  $f_{\rm A} = 1/T_{\rm A}$ .


These nomenclature changes are justified on the following pages.

The graph above shows the functional relationship described here. It should be noted:

  • The frequency period  $f_{\rm P}$  has been deliberately chosen to be small here so that the overlap of the spectra to be summed can be clearly seen.
  • In practice  $f_{\rm P}$  should be at least twice as large as the largest frequency contained in the signal  $x(t)$  due to the sampling theorem.
  • If this is not fulfilled, then  Aliasing  must be reckoned with - see chapter  Possible Errors When Using DFT.


Frequency Discretisation – Periodisation in the Time Domain


The discretisation of  $X(f)$  can also be described by a multiplication with a Dirac comb. The result is the spectrum sampled in the distance  $f_{\rm A}$ :

$${\rm A}\{X(f)\} = X(f) \cdot \sum_{\mu = - \infty }^{+\infty} f_{\rm A} \cdot \delta (f- \mu \cdot f_{\rm A } ) = \sum_{\mu = - \infty }^{+\infty} f_{\rm A} \cdot X(\mu \cdot f_{\rm A } ) \cdot\delta (f- \mu \cdot f_{\rm A } )\hspace{0.05cm}.$$

If one transforms the frequency-dirac comb $($with pulse weights  $f_{\rm A})$  used here into the time domain, one obtains with  $T_{\rm P} = 1/f_{\rm A}$:

$$\sum_{\mu = - \infty }^{+\infty} f_{\rm A} \cdot \delta (f- \mu \cdot f_{\rm A } ) \hspace{0.2cm}\bullet\!\!-\!\!\!-\!\!\!-\!\!\circ\, \hspace{0.2cm} \sum_{\nu = - \infty }^{+\infty} \delta (t- \nu \cdot T_{\rm P } ) \hspace{0.05cm}.$$

The multiplication with  $X(f)$  corresponds in the time domain to the convolution with  $x(t)$. One obtains the signal  $T_{\rm P}$  periodified in the distance  $\text{P}\{ x(t)\}$:

$${\rm A}\{X(f)\} \hspace{0.2cm}\bullet\!\!-\!\!\!-\!\!\!-\!\!\circ\, \hspace{0.2cm} {\rm P}\{x(t)\} = x(t) \star \sum_{\nu = - \infty }^{+\infty} \delta (t- \nu \cdot T_{\rm P } )= \sum_{\nu = - \infty }^{+\infty} x (t- \nu \cdot T_{\rm P } ) \hspace{0.05cm}.$$
Frequency Discretisation – Periodisation in the Time Domain

$\text{Example 1:}$  This correlation is illustrated in the graph:

  • Due to the coarse frequency rastering, this example results in a relatively small value for the time period  $T_{\rm P}$ .


  • Therefore, the (blue) periodised time signal  $\text{P}\{ x(t)\}$  differs significantly from  $x(t)$.

due to overlaps.

Finite Signal Representation


Finite Signals of the Discrete Fourier Transform (DFT)

One arrives at the so-called  finite signal representation ,

  • if both the time function  $x(t)$
  • and the spectral function  $X(f)$


are specified exclusively by their sample values.
The graph is to be interpreted as follows:

  • In the left picture, drawn in blue, is the function  $\text{A}\{ \text{P}\{ x(t)\}\}$. This results from sampling the periodified time function  $\text{P}\{ x(t)\}$  with equidistant dirac pulses at a distance  $T_{\rm A} = 1/f_{\rm P}$.
  • In the right picture the function is drawn in green  $\text{P}\{ \text{A}\{ X(f)\}\}$. This results from periodisation $($with  $f_{\rm P})$  of the sampled spectral function  $\{ \text{A}\{ X(f)\}\}$.
  • There is a Fourier correspondence between the blue finite signal (left sketch) and the green finite signal (right sketch), as follows:
$${\rm A}\{{\rm P}\{x(t)\}\} \hspace{0.2cm}\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\, \hspace{0.2cm} {\rm P}\{{\rm A}\{X(f)\}\} \hspace{0.05cm}.$$
  • The diraclines of the periodic continuation  $\text{P}\{ \text{A}\{ X(f)\}\}$  of the sampled spectral function, however, only fall into the same frequency grid as those of  $\text{A}\{ X(f)\}$ if the frequency period  $f_{\rm P}$  is an integer multiple  $(N)$  of the frequency sampling interval  $f_{\rm A}$ .
  • Therefore, when using the finite signal representation, the following condition must always be fulfilled, where the natural number  $N$  in practice is usually a power of two  (the above graph is based on the value  $N = 8$ ):
$$f_{\rm P} = N \cdot f_{\rm A} \hspace{0.5cm} \Rightarrow\hspace{0.5cm} {1}/{T_{\rm A}}= N \cdot f_{\rm A} \hspace{0.5cm} \Rightarrow\hspace{0.5cm} N \cdot f_{\rm A}\cdot T_{\rm A} = 1\hspace{0.05cm}.$$
  • If the condition  $N \cdot f_{\rm A} \cdot T_{\rm A} = 1$  the order of periodization and sampling is interchangeable. Thus:
$${\rm A}\{{\rm P}\{x(t)\}\} = {\rm P}\{{\rm A}\{x(t)\}\}\hspace{0.2cm}\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\, \hspace{0.2cm} {\rm P}\{{\rm A}\{X(f)\}\} = {\rm A}\{{\rm P}\{X(f)\}\}\hspace{0.05cm}.$$

$\text{Conclusion:}$ 

  • The time function  $\text{P}\{ \text{A}\{ x(t)\}\}$  has the period  $T_{\rm P} = N \cdot T_{\rm A}$.
  • The period in the frequency domain is  $f_{\rm P} = N \cdot f_{\rm A}$.
  • For the description of the discretised time and frequency response in each case  $N$  complex numerical values in the form of pulse weights are thus sufficient.


$\text{Example 2:}$  A time-limited (pulse-like) signal  $x(t)$  is present in sampled form, where the distance between two samples  $T_{\rm A} = 1\, {\rm µ s}$  is:

  • After a discrete Fourier transform with  $N = 512$  the spectrum  $X(f)$  is in the form of samples spaced  $f_{\rm A} = (N \cdot T_{\rm A})^{-1} \approx 1.953\,\text{kHz} $  before.
  • Increasing the DFT–parameter to  $N= 2048$ results in a (four times) finer frequency grid with  $f_{\rm A} \approx 488\,\text{Hz}$.


From the Continuous to the Discrete Fourier Transform


From the conventional first Fourier integral

$$X(f) =\int_{-\infty }^{+\infty}x(t) \cdot {\rm e}^{-{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} 2 \pi \hspace{0.05cm}\cdot \hspace{0.05cm} f \hspace{0.05cm}\cdot \hspace{0.05cm}t}\hspace{0.1cm} {\rm d}t$$

arises from discretisation  $(\text{d}t \to T_{\rm A}$,  $t \to \nu \cdot T_{\rm A}$,  $f \to \mu \cdot f_{\rm A}$,  $T_{\rm A} \cdot f_{\rm A} = 1/N)$  the sampled and periodised spectral function

$${\rm P}\{X(\mu \cdot f_{\rm A})\} = T_{\rm A} \cdot \sum_{\nu = 0 }^{N-1} {\rm P}\{x(\nu \cdot T_{\rm A})\}\cdot {\rm e}^{-{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} 2 \pi \hspace{0.05cm} \cdot \hspace{0.05cm}\nu \hspace{0.05cm} \cdot \hspace{0.05cm}\mu /N} \hspace{0.05cm}.$$

It is taken into account that due to the discretisation, the periodised functions are to be used in each case.

For reasons of simplified notation, we now make the following substitutions:

  • The  $N$  time-domain coefficients'  are with the iterating variable  $\nu = 0$, ... , $N - 1$:
$$d(\nu) =. {\rm P}\left\{x(t)\right\}{\big|}_{t \hspace{0.05cm}= \hspace{0.05cm}\nu \hspace{0.05cm}\cdot \hspace{0.05cm}T_{\rm A}}\hspace{0.05cm}.$$
  • Let  $N$  frequency domain coefficients'  be associated with the running variable  $\mu = 0,$ ... , $N$ – 1:
$$D(\mu) = f_{\rm A} \cdot {\rm P}\left\{X(f)\right\}{\big|}_{f \hspace{0.05cm}= \hspace{0.05cm}\mu \hspace{0.05cm}\cdot \hspace{0.05cm}f_{\rm A}}\hspace{0.05cm}.$$
  • Abbreviation is written for the from  $N$  dependent  complex rotation factor' :
$$w = {\rm e}^{-{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} 2 \pi /N} = \cos \left( {2 \pi}/{N}\right)-{\rm j} \cdot \sin \left( {2 \pi}/{N}\right) \hspace{0.05cm}.$$
On Defining the Discrete Fourier Transform (DFT) with  $N=8$

$\text{Definition:}$ 

The term  Discrete Fourier Transform  (in short DFT)  means the calculation of the  $N$  spectral coefficients  $D(\mu)$  from the  $N$  signal coefficients  $d(\nu)$:

$$D(\mu) = \frac{1}{N} \cdot \sum_{\nu = 0 }^{N-1} d(\nu)\cdot {w}^{\hspace{0.05cm}\nu \hspace{0.07cm} \cdot \hspace{0.05cm}\mu} \hspace{0.05cm}. $$

In the diagram you can see

  • the  $N = 8$  signal coefficients  $d(\nu)$  by the blue filling,
  • the  $N = 8$  spectral coefficients  $D(\mu)$  at the green filling.


Inverse Discrete Fourier Transform


The Inverse Discrete Fourier Transform (IDFT) describes the  second Fourier integral

$$\begin{align*}x(t) & = \int_{-\infty }^{+\infty}X(f) \cdot {\rm e}^{\hspace{0.05cm}{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} 2 \pi \hspace{0.05cm}\cdot \hspace{0.05cm} f \hspace{0.05cm}\cdot \hspace{0.05cm} t}\hspace{0.1cm} {\rm d}f\end{align*}$$

in discretized form:  

$$d(\nu) = {\rm P}\left\{x(t)\right\}{\big|}_{t \hspace{0.05cm}= \hspace{0.05cm}\nu \hspace{0.05cm}\cdot \hspace{0.05cm}T_{\rm A}}\hspace{0.01cm}.$$
On the Definition of the IDFT with  $N=8$

$\text{Definition:}$ 

The term  Inverse Discrete Fourier Transform  (in short IDFT)  means the calculation of the signal coefficients  $d(\nu)$  from the spectral coefficients  $D(\mu)$:

$$d(\nu) = \sum_{\mu = 0 }^{N-1} D(\mu) \cdot {w}^{-\nu \hspace{0.07cm} \cdot \hspace{0.05cm}\mu} \hspace{0.05cm}.$$

With the run variables  $\nu = 0, \hspace{0.05cm}\text{...} \hspace{0.05cm}, N-1$  und  $\mu = 0, \hspace{0.05cm}\text{...} \hspace{0.05cm}, N-1$  gilt auch hier:

$$d(\nu) = {\rm P}\left\{x(t)\right\}{\big \vert}_{t \hspace{0.05cm}= \hspace{0.05cm}\nu \hspace{0.05cm}\cdot \hspace{0.05cm}T_{\rm A} }\hspace{0.01cm},$$
$$D(\mu) = f_{\rm A} \cdot {\rm P}\left\{X(f)\right\}{\big \vert}_{f \hspace{0.05cm}= \hspace{0.05cm}\mu \hspace{0.05cm}\cdot \hspace{0.05cm}f_{\rm A} } \hspace{0.01cm},$$
$$w = {\rm e}^{- {\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} 2 \pi /N} \hspace{0.01cm}.$$


A comparison between the  DFT  and IDFT shows that exactly the same algorithm can be used. The only differences between IDFT and DFT are:

  • The exponent of the rotation factor is to be applied with different sign.
  • In the IDFT, the division by  $N$ is omitted.


Interpretation of DFT and IDFT


The graph shows the discrete coefficients in the time and frequency domain together with the periodified time-continuous functions.

Time– and Frequency range Coefficients of the DFT

When using DFT or IDFT, please note:

  • According to the above definitions, the DFT coefficients  $d(ν)$  and  $D(\mu)$  always have the unit of the time function.
  • Dividing  $D(\mu)$  by  $f_{\rm A}$, one obtains the spectral value  $X(\mu \cdot f_{\rm A})$.
  • The spectral coefficients  $D(\mu)$  must always be complex in order to be able to consider odd time functions.
  • In order to be able to transform bandpass signals in the equivalent lowpass–range, one usually also uses complex time coefficients  $d(\nu)$.
  • The basic interval for  $\nu$  and  $\mu$  is usually defined as the range from  $0$  to  $N - 1$  (filled circles in the graph).
  • With the complex-valued number sequences  $\langle \hspace{0.1cm}d(\nu)\hspace{0.1cm}\rangle = \langle \hspace{0.1cm}d(0), \hspace{0.05cm}\text{...} \hspace{0.05cm} , d(N-1) \hspace{0.1cm}\rangle$   and   $\langle \hspace{0.1cm}D(\mu)\hspace{0.1cm}\rangle = \langle \hspace{0.1cm}D(0), \hspace{0.05cm}\text{...} \hspace{0.05cm} , D(N-1) \hspace{0.1cm}\rangle$  DFT and IDFT are symbolised similarly to the conventional Fourier transform:
$$\langle \hspace{0.1cm} D(\mu)\hspace{0.1cm}\rangle \hspace{0.2cm}\bullet\!\!-\!\!\!-(N)\!-\!\!\!-\!\!\hspace{0.05cm}\circ\, \hspace{0.2cm} \langle \hspace{0.1cm} d(\nu) \hspace{0.1cm}\rangle \hspace{0.05cm}.$$
  • If the time function  $x(t)$  is already limited to the range  $0 \le t \lt N \cdot T_{\rm A}$  then the time coefficients output by the IDFT directly give the samples of the time function:   $d(\nu) = x(\nu \cdot T_{\rm A}).$
  • If  $x(t)$  is shifted with respect to the basic interval, one has to choose the association shown in  $\text{Example 3}$  between  $x(t)$  and the coefficients  $d(\nu)$ .


$\text{Example 3:}$  Die obere Grafik zeigt den unsymmetrischen Dreieckimpuls  $x(t)$, dessen absolute Breite kleiner ist als  $T_{\rm P} = N \cdot T_{\rm A}$.

On Assigning of the DFT Coefficients With  $N=8$

The sketch below shows the assigned DFT coefficients $($valid for  $N = 8)$.

  • For  $\nu = 0,\hspace{0.05cm}\text{...} \hspace{0.05cm} , N/2 = 4$  $d(\nu) = x(\nu \cdot T_{\rm A})$ holds:
$$d(0) = x (0)\hspace{0.05cm}, \hspace{0.15cm} d(1) = x (T_{\rm A})\hspace{0.05cm}, \hspace{0.15cm} d(2) = x (2T_{\rm A})\hspace{0.05cm}, $$
$$d(3) = x (3T_{\rm A})\hspace{0.05cm}, \hspace{0.15cm} d(4) = x (4T_{\rm A})\hspace{0.05cm}.$$
  • On the other hand, the coefficients  $d(5)$,  $d(6)$  and  d$(7)$  are to be set as follows:
$$d(\nu) = x \big ((\nu\hspace{-0.05cm} - \hspace{-0.05cm} N ) \cdot T_{\rm A}\big ) $$
$$ \Rightarrow \hspace{0.2cm}d(5) = x (-3T_{\rm A})\hspace{0.05cm}, \hspace{0.35cm} d(6) = x (-2T_{\rm A})\hspace{0.05cm}, \hspace{0.35cm} d(7) = x (-T_{\rm A})\hspace{0.05cm}.$$

Exercises for The Chapter


Exercise 5.2: Inverse Discrete Fourier Transform

Exercise 5.2Z: DFT of a Triangular Pulse