Difference between revisions of "Aufgaben:Exercise 2.2: DC Component of Signals"

From LNTwww
Line 78: Line 78:
  
  
'''(3)'''  With a periodic signal, averaging over a period duration is sufficient to calculate the DC signal component  $A_0$ .  
+
'''(3)'''  Given a periodic signal, averaging over a period duration is sufficient to calculate the DC signal component  $A_0$ .  
*Beim Beispielsignal   $x_3(t)$  ist diese  $T_0 = 3\,\text{ms}$. Damit ergibt sich der gesuchte Gleichanteil zu
+
*For the sample signal   $x_3(t)$  the period duration is  $T_0 = 3\,\text{ms}$. This results in the required DC component:$$A_0=\rm \frac{1}{3\,ms}\cdot \big[1\,V\cdot 1\,ms+(-1\,V)\cdot 2\,ms \big]
 
:$$A_0=\rm \frac{1}{3\,ms}\cdot \big[1\,V\cdot 1\,ms+(-1\,V)\cdot 2\,ms \big]
 
 
\hspace{0.15cm}\underline{=-0.333\,V}.$$
 
\hspace{0.15cm}\underline{=-0.333\,V}.$$
  
  
  
'''(4)'''  Für das Signal  $x_4(t)$  kann geschrieben werden:  $x_4(t) = 0.5 \,{\rm V} + Δx_4(t)$.  
+
'''(4)'''  The signal  $x_4(t)$  can be written as:  $x_4(t) = 0.5 \,{\rm V} + Δx_4(t)$.  
*Hierbei bezeichnet  $Δx_4(t)$  einen Rechteckimpuls mit Amplitude  $0.5 \,{\rm V} $  und Dauer  $4 \,{\rm ms} $, der wegen seiner endlichen Dauer nicht zum Gleichsignalanteil beiträgt.  
+
*Here  $Δx_4(t)$  denotes a square wave pulse with amplitude  $0.5 \,{\rm V} $  and duration  $4 \,{\rm ms} $, which due to its finite duration does not contribute to the DC signal component..  
*Deshalb gilt hier  $A_0 \hspace{0.15cm}\underline{=0.5 \,{\rm V}}$.
+
*Therefore  $A_0 \hspace{0.15cm}\underline{=0.5 \,{\rm V}}$ applies here.
  
  
  
'''(5)'''  Die allgemeine Gleichung zur Berechnung des Gleichsignalanteils lautet:
+
'''(5)'''  The general equation for calculating the DC signal component is:
 
   
 
   
 
:$$A_0=\lim_{T_{\rm M}\to \infty}\frac{1}{T_{\rm M}}\int_{-T_{\rm M}/2}^{+T_{\rm M}/2}x(t)\, {\rm d }t.$$
 
:$$A_0=\lim_{T_{\rm M}\to \infty}\frac{1}{T_{\rm M}}\int_{-T_{\rm M}/2}^{+T_{\rm M}/2}x(t)\, {\rm d }t.$$
  
*Spaltet man dieses Integral in zwei Teilintegrale auf, so erhält man:
+
*If one splits this integral into two partial integrals, one obtains:
 
   
 
   
 
:$$A_0=\lim_{T_{\rm M}\to \infty}\frac{1}{T_{\rm M}}\int _{-T_{\rm M}/2}^{0}0 {\rm V} \cdot\, {\rm d } {\it t }+\lim_{T_{\rm M}\to \infty}\frac{1}{T_{\rm M}}\int _{0}^{+T_{\rm M}/2}1 \rm V \ {\rm d }{\it t }.$$
 
:$$A_0=\lim_{T_{\rm M}\to \infty}\frac{1}{T_{\rm M}}\int _{-T_{\rm M}/2}^{0}0 {\rm V} \cdot\, {\rm d } {\it t }+\lim_{T_{\rm M}\to \infty}\frac{1}{T_{\rm M}}\int _{0}^{+T_{\rm M}/2}1 \rm V \ {\rm d }{\it t }.$$
  
*Nur der zweite Term liefert einen Beitrag. Daraus folgt wiederum  $A_0 \hspace{0.15cm}\underline{=0.5 \,{\rm V}}$.
+
*Only the second term makes a contribution. From this follows again :  $A_0 \hspace{0.15cm}\underline{=0.5 \,{\rm V}}$.
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
 
__NOEDITSECTION__
 
__NOEDITSECTION__
 
[[Category:Exercises for Signal Representation|^2.2 Direct Current Signal - Limit Case of a Periodic Signal^]]
 
[[Category:Exercises for Signal Representation|^2.2 Direct Current Signal - Limit Case of a Periodic Signal^]]

Revision as of 02:52, 4 January 2021

Rechtecksignale mit und ohne Gleichanteil

The graph shows some time signals defined for all times $($from  $-\infty$  to  $+\infty)$ . For all six sample signals  $x_i(t)$  the associated spectral function can be written as:

$$X_i(f)=A_0\cdot{\rm \delta}(f)+\Delta X_i(f).$$

Here

  • $A_0$  is the DC component, and
  • $\Delta X_i(f)$  is the spectrum of the residual signal reduced by the DC component  $\Delta x_i(t) = x_i(t) - A_0$.





Hint:




Questions

1

Which of the signals contains a DC component, i.e. for which signals is   $A_0 \neq 0$?

Signal  $x_1(t),$
signal  $x_2(t),$
signal  $x_3(t),$
signal  $x_4(t),$
signal  $x_5(t),$
signal  $x_6(t).$

2

For which of the signals is the „residual spectrum”  $\Delta X_i(f) =0$?

Signal  $x_1(t),$
signal  $x_2(t),$
signal  $x_3(t),$
signal  $x_4(t),$
signal  $x_5(t),$
signal  $x_6(t).$

3

What is the DC component of the signal  $x_3(t)$?

$x_3(t)\hspace{-0.1cm}:\,\,A_0 \ = \ $

  ${\rm V}$

4

What is the DC component of the signal  $x_4(t)$?

$x_4(t)\hspace{-0.1cm}:\,\,A_0\ = \ $

  ${\rm V}$

5

What is the DC component of the signal  $x_6(t)$?

$x_6(t)\hspace{-0.1cm}:\,\,A_0\ = \ $

  ${\rm V}$


Solution

(1)  The correct answers are 1, 3, 4, 5 and 6.

  • All signals except  $x_2(t)$  contain a DC signal component.


(2)  Only solution 5 is correct:

  • If the DC component   $1\text{V}$ is subtracted from the signal   $x_5(t)$ , the residual signal  $\Delta x_5(t) = x5(t) - 1\text{V}$  is equal to zero.
  • Accordignly, the spectral function is  $\Delta X_5(f) = 0$.
  • For all other time courses  $\Delta x_i(t)$  is not equal to zero and thus the associated spectral function   $\Delta X_i(f)$ is also not equal to zero.


(3)  Given a periodic signal, averaging over a period duration is sufficient to calculate the DC signal component  $A_0$ .

  • For the sample signal  $x_3(t)$  the period duration is  $T_0 = 3\,\text{ms}$. This results in the required DC component:$$A_0=\rm \frac{1}{3\,ms}\cdot \big[1\,V\cdot 1\,ms+(-1\,V)\cdot 2\,ms \big] \hspace{0.15cm}\underline{=-0.333\,V}.$$


(4)  The signal  $x_4(t)$  can be written as:  $x_4(t) = 0.5 \,{\rm V} + Δx_4(t)$.

  • Here  $Δx_4(t)$  denotes a square wave pulse with amplitude  $0.5 \,{\rm V} $  and duration  $4 \,{\rm ms} $, which due to its finite duration does not contribute to the DC signal component..
  • Therefore  $A_0 \hspace{0.15cm}\underline{=0.5 \,{\rm V}}$ applies here.


(5)  The general equation for calculating the DC signal component is:

$$A_0=\lim_{T_{\rm M}\to \infty}\frac{1}{T_{\rm M}}\int_{-T_{\rm M}/2}^{+T_{\rm M}/2}x(t)\, {\rm d }t.$$
  • If one splits this integral into two partial integrals, one obtains:
$$A_0=\lim_{T_{\rm M}\to \infty}\frac{1}{T_{\rm M}}\int _{-T_{\rm M}/2}^{0}0 {\rm V} \cdot\, {\rm d } {\it t }+\lim_{T_{\rm M}\to \infty}\frac{1}{T_{\rm M}}\int _{0}^{+T_{\rm M}/2}1 \rm V \ {\rm d }{\it t }.$$
  • Only the second term makes a contribution. From this follows again :  $A_0 \hspace{0.15cm}\underline{=0.5 \,{\rm V}}$.