Difference between revisions of "Aufgaben:Exercise 2.4: 2D Transfer Function"
Line 53: | Line 53: | ||
===Solution=== | ===Solution=== | ||
{{ML-Kopf}} | {{ML-Kopf}} | ||
− | '''(1)''' The period can be read from the given graph. If the magnitude representation is taken into account, the result is $T_0 \ \underline {= 20 \ \ \rm ms}$. | + | '''(1)''' The period can be read from the given graph. If the magnitude representation is taken into account, the result is $T_0 \ \underline {= 20 \ \ \rm ms}$. |
− | '''(2)''' At time $t_1 \ \underline {= 5 \ \ \rm ms}$ we have $h(\tau = 1 \ {\rm µ s}, t_1) = 0$. Accordingly, the following applies | + | '''(2)''' At time $t_1 \ \underline {= 5 \ \ \rm ms}$ we have $h(\tau = 1 \ {\rm µ s}, t_1) = 0$. Accordingly, the following applies |
:$$h(\tau = 1\,{\rm µ s},\hspace{0.05cm}t_1) = \frac{1}{ \sqrt{2}} \cdot \delta(\tau)\hspace{0.3cm}\Rightarrow \hspace{0.3cm} | :$$h(\tau = 1\,{\rm µ s},\hspace{0.05cm}t_1) = \frac{1}{ \sqrt{2}} \cdot \delta(\tau)\hspace{0.3cm}\Rightarrow \hspace{0.3cm} | ||
H(f,\hspace{0.05cm}t_1) = \frac{1}{ \sqrt{2}} = {\rm const.}$$ | H(f,\hspace{0.05cm}t_1) = \frac{1}{ \sqrt{2}} = {\rm const.}$$ | ||
− | The same applies to $t_2 \ \underline {= 15 \ \ \rm ms}$: | + | The same applies to $t_2 \ \underline {= 15 \ \ \rm ms}$: |
:$$h(\tau = 1\,{\rm µ s},\hspace{0.05cm}t_2) = \frac{1}{ \sqrt{2}} \cdot \delta(\tau)\hspace{0.3cm}\Rightarrow \hspace{0.3cm} | :$$h(\tau = 1\,{\rm µ s},\hspace{0.05cm}t_2) = \frac{1}{ \sqrt{2}} \cdot \delta(\tau)\hspace{0.3cm}\Rightarrow \hspace{0.3cm} | ||
H(f,\hspace{0.05cm}t_2) = \frac{1}{ \sqrt{2}} = {\rm const.}$$ | H(f,\hspace{0.05cm}t_2) = \frac{1}{ \sqrt{2}} = {\rm const.}$$ | ||
Line 66: | Line 66: | ||
− | '''(3)''' At time $t = 0$ the impulse response with $\tau_1 = 1 \ \ \rm µ s$ is | + | '''(3)''' At time $t = 0$ the impulse response with $\tau_1 = 1 \ \ \rm µ s$ is |
:$$h(\tau,\hspace{0.05cm}t = 0) = \frac{1}{ \sqrt{2}} \cdot \delta(\tau)+ \delta(\tau - \tau_1)\hspace{0.05cm}.$$ | :$$h(\tau,\hspace{0.05cm}t = 0) = \frac{1}{ \sqrt{2}} \cdot \delta(\tau)+ \delta(\tau - \tau_1)\hspace{0.05cm}.$$ | ||
Line 76: | Line 76: | ||
Therefore, | Therefore, | ||
− | * $H_0(f)$ is periodic with $1/\tau_1 = 1 \ \rm MHz$. | + | * $H_0(f)$ is periodic with $1/\tau_1 = 1 \ \rm MHz$. |
* For the maximum and minimum values, we have | * For the maximum and minimum values, we have | ||
:$${\rm Max}\, \left [ \, |H_0(f)|\, \right ] \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \sqrt { 1.5 + { \sqrt{2}} } \approx 1.707 \hspace{0.05cm},\hspace{0.5cm}{\rm Min}\, \left [ \, |H_0(f)|\, \right ] \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \sqrt { 1.5 - { \sqrt{2}} } \approx 0.293 \hspace{0.05cm}. $$ | :$${\rm Max}\, \left [ \, |H_0(f)|\, \right ] \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \sqrt { 1.5 + { \sqrt{2}} } \approx 1.707 \hspace{0.05cm},\hspace{0.5cm}{\rm Min}\, \left [ \, |H_0(f)|\, \right ] \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \sqrt { 1.5 - { \sqrt{2}} } \approx 0.293 \hspace{0.05cm}. $$ | ||
− | * At $f = 0$, $|H_0(f)|$ has a maximum. | + | * At $f = 0$, $|H_0(f)|$ has a maximum. |
− | Therefore, <u>all three solution suggestions</u> are correct. | + | Therefore, <u>all three solution suggestions</u> are correct. |
'''(4)''' For the time $t = 10 \ \rm ms$ the following equations apply: | '''(4)''' For the time $t = 10 \ \rm ms$ the following equations apply: | ||
Line 93: | Line 93: | ||
[[File:P_ID2163__Mob_A_2_4d.png|right|frame|2D impulse response $|h(\tau, \hspace{0.05cm}t)|$ and 2D transfer function $|H(f, \hspace{0.05cm}t)|$]] | [[File:P_ID2163__Mob_A_2_4d.png|right|frame|2D impulse response $|h(\tau, \hspace{0.05cm}t)|$ and 2D transfer function $|H(f, \hspace{0.05cm}t)|$]] | ||
<u>Solutions 1 and 2</u> are correct: | <u>Solutions 1 and 2</u> are correct: | ||
− | *The frequency period does not change | + | *The frequency period does not change compaired to $t = 0$. |
− | *The maximum value is still $1 | + | *The maximum value is still $1.707$ and the minimum value $0.293$ does not change compared to the subtask '''(3)'''. |
− | *For $f = 0$ there is now a minimum and not a maximum. | + | *For $f = 0$ there is now a minimum and not a maximum. |
− | The graph on the right shows the magnitude $|H(f, t)|$ of the 2D transfer function. | + | The graph on the right shows the magnitude $|H(f, t)|$ of the 2D transfer function. |
Revision as of 17:12, 11 January 2021
The graph shows the two-dimensional impulse response $h(\tau, \hspace{0.05cm}t)$ of a mobile radio system in magnitude representation.
- It can be seen that the 2D impulse response only has components at delays $\tau = 0$ and $\tau = 1 \ \rm µ s$ .
- At these times:
- $$h(\tau = 0\,{\rm µ s},\hspace{0.05cm}t) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \frac{1}{ \sqrt{2}} = {\rm const.}$$
- $$h(\tau = 1\,{\rm µ s},\hspace{0.05cm}t) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \cos(2\pi \cdot {t}/{ T_0})\hspace{0.05cm}.$$
For all other values of $\tau$, we have $h(\tau, \hspace{0.05cm}t) \equiv 0$.
We want to obtain the two-dimensional transfer function $H(f, \hspace{0.05cm} t)$ as the Fourier transform of $h(\tau, t)$ with respect to the delay $\tau$:
- $$H(f,\hspace{0.05cm} t) \hspace{0.2cm} \stackrel {f,\hspace{0.05cm}\tau}{\bullet\!\!-\!\!\!-\!\!\!-\!\!\circ} \hspace{0.2cm} h(\tau,\hspace{0.05cm}t) \hspace{0.05cm}.$$
Notes:
- This task belongs to chapter Multi–Path Reception in Mobile Communications.
- A similar problem is treated in Exercize 2.5 but with a different nomenclature.
Questionnaire
Solution
(2) At time $t_1 \ \underline {= 5 \ \ \rm ms}$ we have $h(\tau = 1 \ {\rm µ s}, t_1) = 0$. Accordingly, the following applies
- $$h(\tau = 1\,{\rm µ s},\hspace{0.05cm}t_1) = \frac{1}{ \sqrt{2}} \cdot \delta(\tau)\hspace{0.3cm}\Rightarrow \hspace{0.3cm} H(f,\hspace{0.05cm}t_1) = \frac{1}{ \sqrt{2}} = {\rm const.}$$
The same applies to $t_2 \ \underline {= 15 \ \ \rm ms}$:
- $$h(\tau = 1\,{\rm µ s},\hspace{0.05cm}t_2) = \frac{1}{ \sqrt{2}} \cdot \delta(\tau)\hspace{0.3cm}\Rightarrow \hspace{0.3cm} H(f,\hspace{0.05cm}t_2) = \frac{1}{ \sqrt{2}} = {\rm const.}$$
(3) At time $t = 0$ the impulse response with $\tau_1 = 1 \ \ \rm µ s$ is
- $$h(\tau,\hspace{0.05cm}t = 0) = \frac{1}{ \sqrt{2}} \cdot \delta(\tau)+ \delta(\tau - \tau_1)\hspace{0.05cm}.$$
Its Fourier transform is
- $$H_0(f) = H(f,\hspace{0.05cm}t = 0) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \frac{1}{ \sqrt{2}} + 1 \cdot {\rm e}^{- {\rm j}\cdot 2 \pi f \tau_1}=\frac{1}{ \sqrt{2}} + \cos( 2 \pi f \tau_1)- {\rm j}\cdot \sin( 2 \pi f \tau_1)$$
- $$\Rightarrow \hspace{0.3cm} |H_0(f)| \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \sqrt { \left [ {1}/{ \sqrt{2}} + \cos( 2 \pi f \tau_1) \right ]^2 + \left [\sin( 2 \pi f \tau_1)\right ]^2}= \sqrt { 0.5 + 1 + {2}/{ \sqrt{2}} \cdot \cos( 2 \pi f \tau_1)} = \sqrt { 1.5 + { \sqrt{2}} \cdot \cos( 2 \pi f \tau_1)}\hspace{0.05cm}.$$
Therefore,
- $H_0(f)$ is periodic with $1/\tau_1 = 1 \ \rm MHz$.
- For the maximum and minimum values, we have
- $${\rm Max}\, \left [ \, |H_0(f)|\, \right ] \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \sqrt { 1.5 + { \sqrt{2}} } \approx 1.707 \hspace{0.05cm},\hspace{0.5cm}{\rm Min}\, \left [ \, |H_0(f)|\, \right ] \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \sqrt { 1.5 - { \sqrt{2}} } \approx 0.293 \hspace{0.05cm}. $$
- At $f = 0$, $|H_0(f)|$ has a maximum.
Therefore, all three solution suggestions are correct.
(4) For the time $t = 10 \ \rm ms$ the following equations apply:
- $$h(\tau,\hspace{0.05cm}t = 10\,{\rm ms}) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \frac{1}{ \sqrt{2}} \cdot \delta(\tau)- \delta(\tau - \tau_1)\hspace{0.05cm},$$
- $$H_{10}(f) = H(f,\hspace{0.05cm}t = 10\,{\rm ms}) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \frac{1}{ \sqrt{2}} - \cos( 2 \pi f \tau_1)+ {\rm j}\cdot \sin( 2 \pi f \tau_1)\hspace{0.05cm},$$
- $$ |H_{10}(f)| \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \sqrt { 1.5 - { \sqrt{2}} \cdot \cos( 2 \pi f \tau_1)}\hspace{0.05cm}.$$
Solutions 1 and 2 are correct:
- The frequency period does not change compaired to $t = 0$.
- The maximum value is still $1.707$ and the minimum value $0.293$ does not change compared to the subtask (3).
- For $f = 0$ there is now a minimum and not a maximum.
The graph on the right shows the magnitude $|H(f, t)|$ of the 2D transfer function.