Difference between revisions of "Aufgaben:Exercise 2.3Z: Oscillation Parameters"

From LNTwww
Line 15: Line 15:
  
  
Eine zweite Darstellungsform lautet mit der Grundfrequenz  $f_0$  und der Phase  $\varphi$:
+
A second form of representation is with the base frequency  $f_0$  and the phase  $\varphi$:
 
:$$x(t)=C \cdot\cos(2\pi f_0t-\varphi).$$
 
:$$x(t)=C \cdot\cos(2\pi f_0t-\varphi).$$
Von einer harmonischen Schwingung ist nun bekannt, dass
+
From a harmonic oscillation it is now known that
 +
:* the first signal maximum occurs at  $t_1 = 2 \,\text{ms}$  auftritt,
  
:* das erste Signalmaximum bei  $t_1 = 2 \,\text{ms}$  auftritt,
+
:* the second signal maximum occurs at  $t_2 = 14 \,\text{ms}$  auftritt,
  
:* das zweite Signalmaximum bei  $t_2 = 14 \,\text{ms}$  auftritt,
+
:* the value  $x_0 ={x(t = 0)} = 3 \,\text{V}$ .
  
:* der Wert  $x_0 ={x(t = 0)} = 3 \,\text{V}$  ist.
 
  
  
Line 30: Line 30:
  
  
 
+
''Hint:''  
''Hinweis:''  
+
*This exercise belongs to the chapter  [[ Signal_Representation/Harmonic_Oscillation|Harmonic Oscillation]].
*Die Aufgabe gehört zum Kapitel  [[ Signal_Representation/Harmonic_Oscillation|Harmonische Schwingung]].
 
 
   
 
   
  
  
  
===Fragebogen===
+
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Wie groß ist die Periodendauer&nbsp; $T_0$&nbsp; und die Grundfrequenz&nbsp; $f_0$?
+
What is the period duration&nbsp; $T_0$&nbsp; and the base frequency&nbsp; $f_0$?
 
|type="{}"}
 
|type="{}"}
 
$T_0\hspace{0.2cm} = \ $  { 12 3% } &nbsp;$\text{ms}$
 
$T_0\hspace{0.2cm} = \ $  { 12 3% } &nbsp;$\text{ms}$
Line 46: Line 45:
  
  
{Welchen Wert haben hier die Verschiebung&nbsp; $\tau$&nbsp; und die Phase&nbsp; $\varphi$&nbsp; $($in&nbsp; $\text{Grad})$&nbsp;?
+
{What is the value of the shift&nbsp; $\tau$&nbsp; and the phase&nbsp; $\varphi$&nbsp; $($in&nbsp; $\text{degrees})$&nbsp;?
 
|type="{}"}
 
|type="{}"}
 
$\tau\hspace{0.25cm} = \ $  { 2 3% } &nbsp;$\text{ms}$
 
$\tau\hspace{0.25cm} = \ $  { 2 3% } &nbsp;$\text{ms}$
Line 52: Line 51:
  
  
{Wie groß ist die Amplitude der harmonischen Schwingung?
+
{What is the amplitude of the harmonic oscillation??
 
|type="{}"}
 
|type="{}"}
 
${C}\ = \ $  { 6 3% } &nbsp;$\text{V}$
 
${C}\ = \ $  { 6 3% } &nbsp;$\text{V}$
  
  
{Wie lautet das Spektrum&nbsp; $X(f)$?&nbsp; Welches Gewicht hat die Spektrallinie bei&nbsp; $+f_0$&nbsp;?
+
{What is the spectrum&nbsp; $X(f)$?&nbsp; What is the weight of the spectral line at&nbsp; $+f_0$&nbsp;?
 
|type="{}"}
 
|type="{}"}
 
$\text{Re}\big[X(f = f_0)\big]\ = \ $  { 1.5 3% } &nbsp;$\text{V}$
 
$\text{Re}\big[X(f = f_0)\big]\ = \ $  { 1.5 3% } &nbsp;$\text{V}$

Revision as of 21:59, 13 January 2021

Definition von  $x_0$,  $t_1$  und  $t_2$

Every harmonic oscillation can also be written in the form

$$x(t)=C\cdot\cos\bigg(2\pi \cdot \frac{t-\tau}{T_0}\bigg).$$

The oscillation is thus completely determined by three parameters:

  • the amplitude  $C$,
  • the period duration   $T_0$,
  • the shift  $\tau$  with respect to a cosine signal.


A second form of representation is with the base frequency  $f_0$  and the phase  $\varphi$:

$$x(t)=C \cdot\cos(2\pi f_0t-\varphi).$$

From a harmonic oscillation it is now known that

  • the first signal maximum occurs at  $t_1 = 2 \,\text{ms}$  auftritt,
  • the second signal maximum occurs at  $t_2 = 14 \,\text{ms}$  auftritt,
  • the value  $x_0 ={x(t = 0)} = 3 \,\text{V}$ .




Hint:



Questions

1

What is the period duration  $T_0$  and the base frequency  $f_0$?

$T_0\hspace{0.2cm} = \ $

 $\text{ms}$
$f_0\hspace{0.2cm} = \ $

 $\text{Hz}$

2

What is the value of the shift  $\tau$  and the phase  $\varphi$  $($in  $\text{degrees})$ ?

$\tau\hspace{0.25cm} = \ $

 $\text{ms}$
$\varphi\hspace{0.2cm} = \ $

 $\text{Grad}$

3

What is the amplitude of the harmonic oscillation??

${C}\ = \ $

 $\text{V}$

4

What is the spectrum  $X(f)$?  What is the weight of the spectral line at  $+f_0$ ?

$\text{Re}\big[X(f = f_0)\big]\ = \ $

 $\text{V}$
$\text{Im}\big[X(f = f_0)\big] \ = \ $

 $\text{V}$


Musterlösung

(1)  Es gilt  $T_0 = t_2 - t_1 = 12\, \text{ms}$  und  $f_0 = 1/T_0 \hspace{0.15cm} \underline{\approx 83.33\, \text{Hz}}$.


(2)  Die Verschiebung beträgt  $\tau \hspace{0.1cm} \underline{= 2\, \text{ms}}$  und die Phase ist  $\varphi = 2\pi \cdot \tau/T_0 = \pi/3$  entsprechend  $\varphi =\hspace{0.15cm} \underline{60^{\circ}}$.


(3)  Aus dem Wert zum Zeitpunkt  $t = 0$  folgt für die Amplitude  ${C}$:

$$x_0=x(t=0)=C\cdot\cos(-60\,^\circ)={C}/{2}=\rm 3\,V \hspace{0.3 cm} \Rightarrow \hspace{0.3 cm}\hspace{0.15cm}\underline{\it C=\rm 6\,V}.$$


(4)  Die dazugehörige Spektralfunktion lautet:

$$X(f)={C}/{2}\cdot{\rm e}^{-{\rm j}\varphi}\cdot\delta(f-f_0)+{C}/{2}\cdot{\rm e}^{{\rm j}\varphi}\cdot\delta(f+f_0).$$
  • Das Gewicht der Diraclinie bei  $f = f_0$  (erster Term) ist   ${C}/2 \cdot {\rm e}^{–\text{j}\varphi} = 3 \,\text{V} \cdot \cos(60^\circ)- 3 \,\text{V} \cdot \sin(60^\circ)\hspace{0.05cm}\approx \underline{1.5 \,\text{V} - \text{j} \cdot 2.6 \,\text{V}}$.