Difference between revisions of "Applets:Complementary Gaussian Error Functions"
Line 72: | Line 72: | ||
{{BlueBox|TEXT= | {{BlueBox|TEXT= | ||
− | '''(1)''' Find the values of the function Q(x) for x=1, x=2, x=4 and x=6. Interpret the graphs | + | '''(1)''' Find the values of the function Q(x) for x=1, x=2, x=4 and x=6. Interpret the graphs for linear and logarithmic ordinates.}} |
*The applet returns the values Q(1)=1.5866⋅10−1, Q(2)=2.275⋅10−2, Q(4)=3.1671⋅10−5 and Q(6)=9.8659⋅10−10. | *The applet returns the values Q(1)=1.5866⋅10−1, Q(2)=2.275⋅10−2, Q(4)=3.1671⋅10−5 and Q(6)=9.8659⋅10−10. | ||
Line 100: | Line 100: | ||
{{BlueBox|TEXT= | {{BlueBox|TEXT= | ||
− | '''(5)''' The results of '''(4)''' are now to be converted for the case of a logarithmic abscissa. The conversion is done | + | '''(5)''' The results of '''(4)''' are now to be converted for the case of a logarithmic abscissa. The conversion is done according to ρ[dB]=20⋅lg(x). }} |
* The linear abscissa value x=1 leads to the logarithmic abscissa value ρ=0 dB ⇒ 0.5⋅erfc(ρ=0 dB)=0.5⋅erfc(x=1)=7.865⋅10−2. | * The linear abscissa value x=1 leads to the logarithmic abscissa value ρ=0 dB ⇒ 0.5⋅erfc(ρ=0 dB)=0.5⋅erfc(x=1)=7.865⋅10−2. |
Revision as of 12:17, 27 January 2021
Open Applet in a new tab English Applet with German WIKI description
Contents
Applet Description
This applet allows the calculation and graphical representation of the (complementary) Gaussian error functions Q(x) and 1/2⋅erfc(x), which are of great importance for error probability calculation.
- Both the abscissa and the function value can be represented either linearly or logarithmically.
- For both functions an upper bound (UB) and a lower bound (LB) are given.
Theoretical Background
In the study of digital transmission systems, it is often necessary to determine the probability that a (mean-free) Gaussian distributed random variable x with variance σ^2 exceeds a given value x_0. For this probability holds:
- {\rm Pr}(x > x_0)={\rm Q}(\frac{x_0}{\sigma}) = 1/2 \cdot {\rm erfc}(\frac{x_0}{\sqrt{2} \cdot \sigma}).
The function {\rm Q}(x )
The function {\rm Q}(x) is called the complementary Gaussian error integral. The following calculation rule applies:
- {\rm Q}(x ) = \frac{1}{\sqrt{2\pi}}\int_{x}^{ +\infty}\hspace{-0.2cm}{\rm e}^{-u^{2}/\hspace{0.05cm} 2}\,{\rm d} u .
- This integral cannot be solved analytically and must be taken from tables if one does not have this applet available.
- Specially for larger x values (i.e., for small error probabilities), the bounds given below provide a useful estimate for {\rm Q}(x), which can also be calculated without tables.
- An upper bound \rm (UB) of this function is:
- {\rm Q}_{\rm UB}(x )=\text{Upper Bound }\big [{\rm Q}(x ) \big ] = \frac{ 1}{\sqrt{2\pi}\cdot x}\cdot {\rm e}^{- x^{2}/\hspace{0.05cm}2} > {\rm Q}(x).
- Correspondingly, for the lower bound \rm (LB):
- {\rm Q}_{\rm LB}(x )=\text{Lower Bound }\big [{\rm Q}(x ) \big ] =\frac{1-1/x^2}{\sqrt{2\pi}\cdot x}\cdot {\rm e}^{-x^ 2/\hspace{0.05cm}2} ={\rm Q}_{\rm UB}(x ) \cdot (1-1/x^2)< {\rm Q}(x).
However, in many program libraries, the function {\rm Q}(x ) cannot be found.
The function 1/2 \cdot {\rm erfc}(x )
On the other hand, in almost all program libraries, you can find the Complementary Gaussian Error Function:
- {\rm erfc}(x) = \frac{2}{\sqrt{\pi}}\int_{x}^{ +\infty}\hspace{-0.2cm}{\rm e}^{-u^{2}}\,{\rm d} u ,
which is related to {\rm Q}(x) as follows: {\rm Q}(x)=1/2\cdot {\rm erfc}(x/{\sqrt{2}}).
- Since in almost all applications this function is used with the factor 1/2, in this applet exactly this function was realized:
- 1/2 \cdot{\rm erfc}(x) = \frac{1}{\sqrt{\pi}}\int_{x}^{ +\infty}\hspace{-0.2cm}{\rm e}^{-u^{2}}\,{\rm d} u .
- Once again, an upper and lower bound can be specified for this function:
- \text{Upper Bound }\big [1/2 \cdot{\rm erfc}(x) \big ] = \frac{ 1}{\sqrt{\pi}\cdot 2x}\cdot {\rm e}^{- x^{2}} ,
- \text{Lower Bound }\big [1/2 \cdot{\rm erfc}(x) \big ] = \frac{ {1-1/(2x^2)}}{\sqrt{\pi}\cdot 2x}\cdot {\rm e}^{- x^{2}} .
When which function offers advantages?
\text{Example 1:} We consider binary baseband transmission. Here, the bit error probability p_{\rm B} = {\rm Q}({s_0}/{\sigma_d}), where the useful signal can take the values \pm s_0 and the noise root mean square value \sigma_d .
It is assumed that tables are available listing the argument of the two Gaussian error functions at distance 0.1. With s_0/\sigma_d = 4 one obtains for the bit error probability according to the function {\rm Q}(x ):
- p_{\rm B} = {\rm Q} (4) \approx 0.317 \cdot 10^{-4}\hspace{0.05cm}.
According to the second equation, we get:
- p_{\rm B} = {1}/{2} \cdot {\rm erfc} ( {4}/{\sqrt{2} })= {1}/{2} \cdot {\rm erfc} ( 2.828)\approx {1}/{2} \cdot {\rm erfc} ( 2.8)= 0.375 \cdot 10^{-4}\hspace{0.05cm}.
- The first value is more correct. In the second method of calculation, one must round or – even better – interpolate, which is very difficult due to the strong nonlinearity of this function.
- Accordingly, with the given numerical values, {\rm Q}(x ) is more suitable. However, outside of exercise examples s_0/\sigma_d will usually have a „curvilinear” value. In this case, of course, {\rm Q}(x) offers no advantage over 1/2 \cdot{\rm erfc}(x).
\text{Example 2:} With the energy per bit (E_{\rm B}) and the noise power density (N_0) the bit error probability of Binary Phase Shift Keying (BPSK) is:
- p_{\rm B} = {\rm Q} \left ( \sqrt{ {2 E_{\rm B} }/{N_0} }\right ) = {1}/{2} \cdot { \rm erfc} \left ( \sqrt{ {E_{\rm B} }/{N_0} }\right ) \hspace{0.05cm}.
For the numerical values E_{\rm B} = 16 \rm mWs and N_0 = 1 \rm mW/Hz we obtain:
- p_{\rm B} = {\rm Q} \left (4 \cdot \sqrt{ 2} \right ) = {1}/{2} \cdot {\rm erfc} \left ( 4\right ) \hspace{0.05cm}.
- The first way leads to the result p_{\rm B} = {\rm Q} (5.657) \approx {\rm Q} (5.7) = 0.6 \cdot 10^{-8}\hspace{0.01cm}, while 1/2 \cdot{\rm erfc}(x) here the more correct value p_{\rm B} \approx 0.771 \cdot 10^{-8} yields.
- As in the first example, however, you can see: The functions {\rm Q}(x) and 1/2 \cdot{\rm erfc}(x) are basically equally well suited.
- Advantages or disadvantages of one or the other function arise only for concrete numerical values.
Exercises
- First select the number (1, 2, \text{...}) of the exercise. The number 0 corresponds to a "Reset": Same setting as at program start.
- A task description is displayed. The parameter values are adjusted. Solution after pressing "Show solution".
(1) Find the values of the function {\rm Q}(x) for x=1, x=2, x=4 and x=6. Interpret the graphs for linear and logarithmic ordinates.
- The applet returns the values {\rm Q}(1)=1.5866 \cdot 10^{-1}, {\rm Q}(2)=2. 275 \cdot 10^{-2}, {\rm Q}(4)=3.1671 \cdot 10^{-5} and {\rm Q}(6)=9.8659 \cdot 10^{-10}.
- With linear ordinate, the values for x>3 are indistinguishable from the zero line. More interesting is the plot with logarithmic ordinate.
(2) Evaluate the two bounds {\rm UB}(x )=\text{Upper Bound }\big [{\rm Q}(x ) \big ] and {\rm LB}(x )=\text{Lower Bound }\big [{\rm Q}(x ) \big ] for the {\rm Q} function.
- For x \ge 2 the upper bound is only slightly above {\rm Q}(x) and the lower bound is only slightly below {\rm Q}(x).
- For example: {\rm Q}(x=4)=3.1671 \cdot 10^{-5} ⇒ {\rm LB}(x=4)=3.1366 \cdot 10^{-5}, {\rm UB}(x=4)=3.3458 \cdot 10^{-5}.
- The upper bound has greater significance for assessing a communications system than "LB", since this corresponds to a "worst case" consideration.
(3) Try to use the app to determine {\rm Q}(x=2 \cdot \sqrt{2} \approx 2.828) as accurately as possible despite the quantization of the input parameter.
- The program returns for x=2.8 the too large result 2.5551 \cdot 10^{-3} and for x=2.85 the result 2.186 \cdot 10^{-3}. The exact value lies in between.
- But it also holds: {\rm Q}(x=2 \cdot \sqrt{2})=0.5 \cdot {\rm erfc}(x=2). This gives the exact value {\rm Q}(x=2 \cdot \sqrt{2})=2.3389 \cdot 10^{-3}.
(4) Find the values of the function 0.5 \cdot {\rm erfc}(x) for x=1, x=2, x=3 and x=4. Interpret the exact results and the bounds.
- The applet returns: 0.5 \cdot {\rm erfc}(1)=7.865 \cdot 10^{-2}, 0.5 \cdot {\rm erfc}(2)=2. 3389 \cdot 10^{-3}, 0.5 \cdot {\rm erfc}(3)=1.1045 \cdot 10^{-5} and 0.5 \cdot {\rm erfc}(4)=7.7086 \cdot 10^{-9}.
- All the above statements about {\rm Q}(x) with respect to suitable representation type and upper and lower bounds also apply to the function 0.5 \cdot {\rm erfc}(x).
(5) The results of (4) are now to be converted for the case of a logarithmic abscissa. The conversion is done according to \rho\big[{\rm dB}\big ] = 20 \cdot \lg(x).
- The linear abscissa value x=1 leads to the logarithmic abscissa value \rho=0\ \rm dB ⇒ 0. 5 \cdot {\rm erfc}(\rho=0\ {\rm dB})={0.5 \cdot \rm erfc}(x=1)=7.865 \cdot 10^{-2}.
- Similarly 0.5 \cdot {\rm erfc}(\rho=6.021\ {\rm dB}) =0.5 \cdot {\rm erfc}(x=2)=2. 3389 \cdot 10^{-3}, 0.5 \cdot {\rm erfc}(\rho=9.542\ {\rm dB})=0.5 \cdot {\rm erfc}(3)=1.1045 \cdot 10^{-5},
- 0.5 \cdot {\rm erfc}(\rho=12.041\ {\rm dB})= 0.5 \cdot {\rm erfc}(4)=7.7086 \cdot 10^{-9}.
- As per right diagram: 0.5 \cdot {\rm erfc}(\rho=6\ {\rm dB}) =2.3883 \cdot 10^{-3}, 0.5 \cdot {\rm erfc}(\rho=9. 5\ {\rm dB}) =1.2109 \cdot 10^{-5}, 0.5 \cdot {\rm erfc}(\rho=12\ {\rm dB}) =9.006 \cdot 10^{-9}.
(6) Find {\rm Q}(\rho=0\ {\rm dB}), {\rm Q}(\rho=5\ {\rm dB}) and {\rm Q}(\rho=10\ {\rm dB}), and establish the relationship between linear and logarithmic abscissa.
- The program returns for logarithmic abscissa {\rm Q}(\rho=0\ {\rm dB})=1. 5866 \cdot 10^{-1}, {\rm Q}(\rho=5\ {\rm dB})=3.7679 \cdot 10^{-2}, {\rm Q}(\rho=10\ {\rm dB})=7.827 \cdot 10^{-4}.
- The conversion is done according to the equation x=10^{\hspace{0.05cm}0.05\hspace{0.05cm} \cdot\hspace{0.05cm} \rho[{\rm dB}]}. For \rho=0\ {\rm dB} we get x=1 ⇒ {\rm Q}(\rho=0\ {\rm dB})={\rm Q}(x=1) =1.5866 \cdot 10^{-1}.
- For \rho=5\ {\rm dB} we get x=1.1778 ⇒ {\rm Q}(\rho=5\ {\rm dB})={\rm Q}(x=1. 778) =3.7679 \cdot 10^{-2}. From the left diagram: {\rm Q}(x=1.8) =3.593 \cdot 10^{-2}.
- For \rho=10\ {\rm dB} we get x=3.162 ⇒ {\rm Q}(\rho=10\ {\rm dB})={\rm Q}(x=3. 162) =7.827 \cdot 10^{-4}. After „quantization”: {\rm Q}(x=3.15) =8.1635 \cdot 10^{-4}.
Applet Manual
(A) Verwendete Gleichungen am Beispiel {\rm Q}(x)
(B) Auswahloption für {\rm Q}(x) oder {\rm 0.5 \cdot erfc}(x)
(C) Schranken {\rm LB} und {\rm UB} werden gezeichnet
(D) Auswahl, ob Abszisse linear \rm (lin) oder logarithmisch \rm (log)
(E) Auswahl, ob Ordinate linear \rm (lin) oder logarithmisch \rm (log)
(F) Numerikausgabe am Beispiel {\rm Q}(x) bei linearer Abszisse
(G) Slidereingabe des Abszissenwertes x für lineare Abszisse
(H) Slidereingabe des Abszissenwertes \rho \ \rm [dB] für logarithmische Abszisse
(I) Grafikausgabe der Funktion {\rm Q}(x) – hier: lineare Abszisse
(J) Grafikausgabe der Funktion {\rm 0.5 \cdot erfc}(x) – hier: lineare Abszisse
(K) Variationsmöglichkeit für die graphischen Darstellungen
\hspace{1.5cm}„+” (Vergrößern),
\hspace{1.5cm} „-” (Verkleinern)
\hspace{1.5cm} „\rm o” (Zurücksetzen)
\hspace{1.5cm} „\leftarrow” (Verschieben nach links), usw.
About the Authors
This interactive calculation tool was designed and implemented at the Institute for Communications Engineering at the Technical University of Munich.
- The first version was created in 2007 by Thomas Großer as part of his diploma thesis with “FlashMX – Actionscript” (Supervisor: Günter Söder).
- In 2018 the program was redesigned by Xiaohan Liu as part of her bachelor thesis (Supervisor: Tasnád Kernetzky ) via „HTML5”.
- Last revision and English version 2021 by Carolin Mirschina in the context of a working student activity. Translation using DEEPL.com.
The conversion of this applet to HTML 5 was financially supported by "Studienzuschüsse" (Faculty EI of the TU Munich). We thank.
Once again: Open Applet in new Tab
Open Applet in a new tab
English Applet with German WIKI description