Difference between revisions of "Aufgaben:Exercise 3.9: Convolution of Rectangle and Gaussian Pulse"

From LNTwww
Line 5: Line 5:
 
[[File:P_ID540__Sig_A_3_9_neu.png|250px|right|frame|Rechteckförmiges  $x(t)$   und gaußförmiges   $h(t)$]]
 
[[File:P_ID540__Sig_A_3_9_neu.png|250px|right|frame|Rechteckförmiges  $x(t)$   und gaußförmiges   $h(t)$]]
  
Wir betrachten einen gaußförmigen Tiefpass mit der äquivalenten Bandbreite  $\Delta f = 40 \,\text{MHz}$:
+
We consider a Gaussian low pass with the equivalent bandwidth  $\Delta f = 40 \,\text{MHz}$:
 
   
 
   
 
:$$H( f ) = {\rm{e}}^{{\rm{ - \pi }}( {f/\Delta f} )^2 } .$$
 
:$$H( f ) = {\rm{e}}^{{\rm{ - \pi }}( {f/\Delta f} )^2 } .$$
  
Die dazugehörige Impulsantwort lautet:
+
The corresponding impulse response is:
 
   
 
   
 
:$$h( t ) = \Delta f \cdot {\rm{e}}^{{\rm{ - \pi }}( {\Delta f  \hspace{0.05cm} \cdot \hspace{0.05cm} t} )^2 } .$$
 
:$$h( t ) = \Delta f \cdot {\rm{e}}^{{\rm{ - \pi }}( {\Delta f  \hspace{0.05cm} \cdot \hspace{0.05cm} t} )^2 } .$$
  
Aus der Skizze ist zu ersehen, dass die äquivalente Zeitdauer   ⇒    $\Delta t = 1/\Delta f = 25\,\text{ns}$  der Impulsantwort  $h(t)$   an den beiden Wendepunkten der Gaußfunktion abgelesen werden kann.
+
From the sketch it can be seen that the equivalent time duration   ⇒    $\Delta t = 1/\Delta f = 25\,\text{ns}$  the impulse response  $h(t)$   can be read at the two inflection points of the Gaussian function.
  
An den Eingang des Tiefpasses werden nun drei verschiedene impulsartige Signale angelegt:
+
Three different pulse-like signals are now applied to the input of the low-pass filter:
* ein Rechteckimpuls  $x_1(t)$  mit Amplitude  $A_1 =1\,\text{V}$  und Dauer  $T_1 = 20\,\text{ns}$   (roter Verlauf),
+
* a square-wave pulse  $x_1(t)$  with amplitude  $A_1 =1\,\text{V}$  and duration  $T_1 = 20\,\text{ns}$   (red curve),
* ein Rechteckimpuls  $x_2(t)$  mit Amplitude  $A_2 =10\,\text{V}$  und Dauer  $T_2 = 2\,\text{ns}$  (violetter Verlauf),
+
* a rectangular pulse  $x_2(t)$  with amplitude  $A_2 =10\,\text{V}$  and duration  $T_2 = 2\,\text{ns}$  (violet curve),
* ein Diracimpuls  $x_3(t)$  mit dem Impulsgewicht  $2 \cdot 10^{–8}\text{ Vs}$   (grüner Pfeil).
+
* a Dirac pulse  $x_3(t)$  with pulse weight  $2 \cdot 10^{–8}\text{ Vs}$   (green arrow).
  
  
Line 25: Line 25:
  
  
''Hinweise:''  
+
''Hints:''  
*Die Aufgabe gehört zum  Kapitel  [[Signal_Representation/The_Convolution_Theorem_and_Operation|Faltungssatz und Faltungsoperation]].
+
*This exercise belongs to the chapter  [[Signal_Representation/The_Convolution_Theorem_and_Operation|The Convolution Theorem and Operation]].
 
   
 
   
*Zur Beantwortung der Fragen können Sie das komplementäre Gaußsche Fehlerintegral benutzen, das wie folgt definiert ist:
+
*To answer the questions, you can use the complementary Gaussian error integral, which is defined as follows:
[[File:P_ID541__Sig_A_3_9Tab_neu.png|right|frame|Einige Werte der Q-Funktion]]
+
[[File:P_ID541__Sig_A_3_9Tab_neu.png|right|frame|Some values of the Q-function]]
 
:$${\rm Q}( x ) = \frac{1}{ {\sqrt {2{\rm{\pi }}} }}\int_{\it x}^\infty  {{\rm{e}}^{{{ - {\it u}}}^{\rm{2}} {\rm{/2}}} }\hspace{0.1cm}{\rm{d}}{\it u}.$$  
 
:$${\rm Q}( x ) = \frac{1}{ {\sqrt {2{\rm{\pi }}} }}\int_{\it x}^\infty  {{\rm{e}}^{{{ - {\it u}}}^{\rm{2}} {\rm{/2}}} }\hspace{0.1cm}{\rm{d}}{\it u}.$$  
  
  
Nebenstehende Tabelle gibt einige Funktionswerte wieder.
+
This table gives some function values.
 
<br clear=all>
 
<br clear=all>
  
Line 39: Line 39:
  
  
===Fragebogen===
+
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>

Revision as of 22:28, 28 January 2021

Rechteckförmiges  $x(t)$  und gaußförmiges  $h(t)$

We consider a Gaussian low pass with the equivalent bandwidth  $\Delta f = 40 \,\text{MHz}$:

$$H( f ) = {\rm{e}}^{{\rm{ - \pi }}( {f/\Delta f} )^2 } .$$

The corresponding impulse response is:

$$h( t ) = \Delta f \cdot {\rm{e}}^{{\rm{ - \pi }}( {\Delta f \hspace{0.05cm} \cdot \hspace{0.05cm} t} )^2 } .$$

From the sketch it can be seen that the equivalent time duration   ⇒   $\Delta t = 1/\Delta f = 25\,\text{ns}$  the impulse response  $h(t)$  can be read at the two inflection points of the Gaussian function.

Three different pulse-like signals are now applied to the input of the low-pass filter:

  • a square-wave pulse  $x_1(t)$  with amplitude  $A_1 =1\,\text{V}$  and duration  $T_1 = 20\,\text{ns}$  (red curve),
  • a rectangular pulse  $x_2(t)$  with amplitude  $A_2 =10\,\text{V}$  and duration  $T_2 = 2\,\text{ns}$  (violet curve),
  • a Dirac pulse  $x_3(t)$  with pulse weight  $2 \cdot 10^{–8}\text{ Vs}$  (green arrow).




Hints:

  • To answer the questions, you can use the complementary Gaussian error integral, which is defined as follows:
Some values of the Q-function
$${\rm Q}( x ) = \frac{1}{ {\sqrt {2{\rm{\pi }}} }}\int_{\it x}^\infty {{\rm{e}}^{{{ - {\it u}}}^{\rm{2}} {\rm{/2}}} }\hspace{0.1cm}{\rm{d}}{\it u}.$$


This table gives some function values.



Questions

1

Berechnen Sie das Signal  $y_1(t) = x_1(t) \ast h(t)$.
Welche Werte ergeben sich zu den Zeiten $t = 0$ und $t = 20\,\text{ns}$ mit der Näherung $(2\pi )^{1/2} \approx 2.5$?

$y_1(t=0)\ = \ $

 $\text{V}$
$y_1(t=20\,\text{ns})\ = \ $

 $\text{V}$

2

Welche Signalwerte ergeben sich beim Ausgangssignal  $y_2(t) = x_2(t) \ast h(t)$ zu den betrachteten Zeitpunkten?

$y_2(t=0)\ = \ $

 $\text{V}$
$y_2(t=20 \,\text{ns})\ = \ $

 $\text{V}$

3

Wie groß ist das Ausgangssignal  $y_3(t) = x_3(t) \ast h(t)$  zu den betrachteten Zeitpunkten? Interpretieren Sie das Ergebnis.

$y_3(t=0)\ = \ $

 $\text{V}$
$y_3(t=20\, \text{ns})\ = \ $

 $\text{V}$


Musterlösung

(1)  Das Faltungsintegral lautet hier:

$$y_1( t ) = A_1 \cdot \Delta f \cdot \int_{t - T_1 /2}^{t + T_1 /2} {{\rm{e}}^{{\rm{ - \pi }}( {\Delta f \hspace{0.05cm}\cdot \hspace{0.05cm} \tau } )^2 } }\hspace{0.1cm} {\rm{d}}\tau = \frac{A_1 }{\sqrt{2\pi }} \cdot\int_{u_1 }^{u_2 } {{\rm{e}}^{ - u^2 /2}\hspace{0.1cm} {\rm{d}}u.}$$
  • Hierbei wurde die Substitution  $u = \sqrt {2{\rm{\pi }}} \cdot \Delta f \cdot \tau$  verwendet. Die Integrationsgrenzen liegen bei:
$$u_1 = \sqrt {2{\rm{\pi }}} \cdot \Delta f \cdot \big( {t - T_1 /2} \big),\hspace{0.5cm}u_2 = \sqrt {2{\rm{\pi }}} \cdot \Delta f \cdot \big( {t + T_1 /2} \big).$$
  • Mit dem komplementären Gaußschen Fehlerintegral kann hierfür auch geschrieben werden:
$$y_1 (t) = A_1 \cdot \big[ {{\rm Q} ( {u_1 } ) - {\rm Q}( {u_2 } )} \big].$$
  • Für den Zeitpunkt  $t = 0$  erhält man mit  $(2\pi )^{1/2} \approx 2.5$:
$$u_2 = \sqrt {2{\rm{\pi }}} \cdot \Delta f \cdot \frac{ {T_1 }}{2} \approx 2.5 \cdot 4 \cdot 10^{7} \;{\rm{1/s}} \cdot 10^{-8} \;{\rm{s}} = 1.$$
  • Mit  $u_1 = -u_2 = -1$  folgt für die beiden gesuchten Signalwerte:
$$y_1 ( {t = 0} ) \approx A_1 \cdot \big[ {{\rm Q}( { - 1} ) - {\rm Q}(+ 1 )} \big] = 1\;{\rm{V}} \cdot \big[ {{\rm{0}}{\rm{.841 - 0}}{\rm{.159}}} \big] \hspace{0.15 cm}\underline{= 0.682\;{\rm{V}}}{\rm{,}}$$
$$y_1 ( {t = 20\;{\rm{ns}}} ) \approx A_1 \cdot \big[ {{\rm Q}( 1 ) - {\rm Q}( 3 )} \big] = 1\;{\rm{V}} \cdot \big[ {{\rm{0}}{\rm{.159 - 0}}{\rm{.001}}} \big] \hspace{0.15 cm}\underline{= 0.158\;{\rm{V}}}{\rm{.}}$$


(2)  Analog zur ersten Musterlösung erhält man für den schmaleren Eingangsimpuls  $x_2(t)$:

$$y_2 ( {t = 0} ) \approx A_2 \cdot \big[ {{\rm Q}( { - 0.1} ) - {\rm Q}( {0.1} )} \big] = 10\;{\rm{V}} \cdot \big[ {{\rm{0}}{\rm{.540 - 0}}{\rm{.460}}} \big] \hspace{0.15 cm}\underline{= 0.80\;{\rm{V}}}{\rm{,}}$$
$$y_2 ( {t = 20\,{\rm ns}} ) \approx A_2 \cdot \big[ {{\rm Q}( {1.9} ) - {\rm Q}( {2.1} )} \big] = 10\;{\rm{V}} \cdot \big[ {{\rm{0}}{\rm{.029 - 0}}{\rm{.018}}} \big] \hspace{0.15 cm}\underline{= 0.11\;{\rm{V}}}{\rm{.}}$$


(3)  Beim diracförmigen Eingangssignal  $x_3(t)$  ist das Ausgangssignal  $y_3(t)$  gleich der Impulsantwort  $h(t)$, gewichtet mit dem Gewicht der Diracfunktion:

$$y_3 (t) = 2 \cdot 10^{ - 8} \,{\rm{Vs}} \cdot 4 \cdot 10^7 \;{\rm{1/s}} \cdot {\rm{e}}^{ - {\rm{\pi }}( {\Delta f \cdot t})^2 }.$$
  • Zum Zeitpunkt  $t = 0$  erhält man auch hier mit guter Näherung  $y_3( t=0)\hspace{0.15 cm}\underline{ =0.8\, {\rm V}}$.
  • Nach  $20\, \rm ns$  ist der Ausgangsimpuls um den Faktor  ${\rm e}^{–0.64π} \hspace{0.15 cm}\underline{\approx 0.136}$  kleiner und man erhält  $y_3( t = 20 \,\text{ns}) ≈ 0.11 \,\text{V}$.


Man erkennt aus dem Vergleich der Resultate aus  (2)  und   (3), dass  $y_3(t)$ ≈ $y_2(t)$  gilt.

  • Der Grund hierfür ist, dass der Diracimpuls eine gute Näherung für einen rechteckförmigen Eingangsimpuls gleicher Fläche ist, wenn die Rechteckdauer  $T$  deutlich kleiner als die äquivalente Impulsdauer  $\Delta t$  der Impulsantwort ist.
  • Das heißt für unser Beispiel:  Ist die Dauer  $T$  des rechteckförmigen Eingangsimpulses  $x(t)$  deutlich kleiner als die äquivalente Dauer  $\Delta t$  der gaußförmigen Impulsantwort  $h(t)$, dann ist auch der Ausgangsimpuls  $y(t)$  nahezu gaußförmig. Aber:   Gauß (einmal) gefaltet mit Nicht–Gauß ergibt nie (exakt) Gauß!