Difference between revisions of "Aufgaben:Exercise 4.5: Locality Curve for DSB-AM"

From LNTwww
Line 5: Line 5:
 
[[File:P_ID751__Sig_A_4_5_neu.png|250px|right|frame|Spektrum des analytischen Signals]]
 
[[File:P_ID751__Sig_A_4_5_neu.png|250px|right|frame|Spektrum des analytischen Signals]]
  
Wir betrachten ein ähnliches Übertragungsszenario wie in der  [[Aufgaben:Aufgabe_4.4:_Zeigerdiagramm_bei_ZSB-AM|Aufgabe 4.4]]  (aber nicht das gleiche):
+
We consider a similar transmission scenario as in  [[Aufgaben:Aufgabe_4.4:_Zeigerdiagramm_bei_ZSB-AM|task 4.4]]  (but not the same):
* ein sinusförmiges Nachrichtensignal mit der Amplitude  $A_{\rm N} = 2 \ \text{V}$   und der  Frequenz  $f_{\rm N} = 10 \ \text{kHz}$,
+
* a sinusoidal message signal with amplitude  $A_{\rm M} = 2 \ \text{V}$   and the frequency  $f_{\rm M} = 10 \ \text{kHz}$,
*ZSB-Amplitudenmodulation ohne Trägerunterdrückung mit der Trägerfrequenz  $f_{\rm T} = 50 \ \text{kHz}$.
+
*DSB-Amplitude Modulation without carrier suppression with carrier frequency  $f_{\rm C} = 50 \ \text{kHz}$.
  
  
Nebenstehend sehen Sie die Spektralfunktion  $S_+(f)$  des analytischen Signals  $s_+(t)$.  
+
Opposite you see the spectral function  $S_+(f)$  of the analytical signal  $s_+(t)$.  
  
Berücksichtigen Sie bei der Lösung, dass das äquivalente Tiefpass-Signal auch in der Form
+
When solving, take into account that the equivalent low pass signal is also in the form
 
   
 
   
:$$s_{\rm TP}(t) = a(t) \cdot {\rm e}^{{\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm} \phi(t)} $$
+
:$$s_{\rm LP}(t) = a(t) \cdot {\rm e}^{{\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm} \phi(t)} $$
  
dargestellt werden kann, wobei&nbsp; $a(t) ≥ 0$&nbsp; gelten soll. Für&nbsp; $\phi(t)$&nbsp; ist der Wertebereich&nbsp; $–\pi < \phi(t) \leq +\pi$&nbsp; zulässig und es gilt die allgemeingültige Gleichung:
+
where&nbsp; $a(t) ≥ 0$&nbsp; shall hold. For&nbsp; $\phi(t)$&nbsp;, the range of values&nbsp; $–\pi < \phi(t) \leq +\pi$&nbsp; is permissible and the generally valid equation applies:
 
   
 
   
 
:$$\phi(t)= {\rm arctan} \hspace{0.1cm}\frac{{\rm Im}\big[s_{\rm
 
:$$\phi(t)= {\rm arctan} \hspace{0.1cm}\frac{{\rm Im}\big[s_{\rm
TP}(t)\big]}{{\rm Re}\big[s_{\rm TP}(t)\big]}.$$
+
LP}(t)\big]}{{\rm Re}\big[s_{\rm LP}(t)\big]}.$$
  
  
Line 28: Line 28:
  
  
''Hinweise:''  
+
''Hints:''  
*Die Aufgabe gehört zum  Kapitel&nbsp; [[Signal_Representation/Equivalent_Low_Pass_Signal_and_Its_Spectral_Function|Äquivalentes Tiefpass-Signal und zugehörige Spektralfunktion]].
+
*This exercise belongs to the chapter&nbsp; [[Signal_Representation/Equivalent_Low_Pass_Signal_and_Its_Spectral_Function|Equivalent Low Pass Signal and Its Spectral Function]].
 
   
 
   
*Sie können Ihre Lösung mit dem interaktiven Applet&nbsp; [[Applets:Physikalisches_Signal_%26_Äquivalentes_TP-Signal|Physikalisches Signal & Äquivalentes TP-Signal]]&nbsp; &nbsp; &rArr; &nbsp; &bdquo;Ortskurve&rdquo; überprüfen.
+
*You can check your solution with the interactive applet&nbsp; [[Applets:Physikalisches_Signal_%26_Äquivalentes_TP-Signal|Physikalisches Signal & Äquivalentes TP-Signal]]&nbsp; &nbsp; &rArr; &nbsp; &bdquo;locus&rdquo;.
  
 
   
 
   
===Fragebogen===
+
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Berechnen Sie das äquivalente Tiefpass-Signal&nbsp; $s_{\rm TP}(t)$&nbsp; im Frequenz– und Zeitbereich. Welchen Wert besitzt&nbsp; $s_{\rm TP}(t)$&nbsp; zum Startzeitpunkt&nbsp; $t = 0$?
+
{Calculate the equivalent low pass signal&nbsp; $s_{\rm LP}(t)$&nbsp; in the frequency and time domain. What is the value of&nbsp; $s_{\rm LP}(t)$&nbsp; at the start time&nbsp; $t = 0$?
 
|type="{}"}
 
|type="{}"}
 
$\text{Re}[s_{\text{TP}}(t=0)]\ = \ $  { 1 3% }  &nbsp;$\text{V}$
 
$\text{Re}[s_{\text{TP}}(t=0)]\ = \ $  { 1 3% }  &nbsp;$\text{V}$
 
$\text{Im}[s_{\text{TP}}(t=0 )]\ = \ $ { 0. } &nbsp;$\text{V}$
 
$\text{Im}[s_{\text{TP}}(t=0 )]\ = \ $ { 0. } &nbsp;$\text{V}$
  
{Welche Werte weist&nbsp; $s_{\rm TP}(t)$&nbsp; zu den Zeitpunkten&nbsp; $t = 10 \ {\rm &micro;} \text{s}= T_0/10$, &nbsp; &nbsp; $t = 25 \ {\rm &micro;} \text{s}= T_0/4$, &nbsp; &nbsp; $t = 75 \ {\rm &micro;} \text{s}= 3T_0/4$&nbsp; und&nbsp; $T_0 = 100 \ {\rm &micro;}s$ auf? <br>Zeigen Sie, dass alle Werte rein reell sind.
+
{What are the values of&nbsp; $s_{\rm TP}(t)$&nbsp; at&nbsp; $t = 10 \ {\rm &micro;} \text{s}= T_0/10$, &nbsp; &nbsp; $t = 25 \ {\rm &micro;} \text{s}= T_0/4$, &nbsp; &nbsp; $t = 75 \ {\rm &micro;} \text{s}= 3T_0/4$&nbsp; and&nbsp; $T_0 = 100 \ {\rm &micro;}s$? <br>Show that all values are purely real.
 
|type="{}"}
 
|type="{}"}
$\text{Re}[s_{\text{TP}}(t=10 \ {\rm &micro;} \text{s})]\ = \ $ { 2.176 3% } &nbsp;$\text{V}$
+
$\text{Re}[s_{\text{LP}}(t=10 \ {\rm &micro;} \text{s})]\ = \ $ { 2.176 3% } &nbsp;$\text{V}$
$\text{Re}[s_{\text{TP}}(t=25 \ {\rm &micro;} \text{s})] \ = \ $ { 3 3% } &nbsp;$\text{V}$
+
$\text{Re}[s_{\text{LP}}(t=25 \ {\rm &micro;} \text{s})] \ = \ $ { 3 3% } &nbsp;$\text{V}$
$\text{Re}[s_{\text{TP}}(t=75 \ {\rm &micro;} \text{s})]\ = \ $ { -1.03--0.97 } &nbsp;$\text{V}$
+
$\text{Re}[s_{\text{LP}}(t=75 \ {\rm &micro;} \text{s})]\ = \ $ { -1.03--0.97 } &nbsp;$\text{V}$
$\text{Re}[s_{\text{TP}}(t=100 \ {\rm &micro;} \text{s})]\ = \ $ { 1 3% } &nbsp;$\text{V}$
+
$\text{Re}[s_{\text{LP}}(t=100 \ {\rm &micro;} \text{s})]\ = \ $ { 1 3% } &nbsp;$\text{V}$
  
{Wie lautet die Betragsfunktion&nbsp; $a(t)$&nbsp; im Zeitbereich? Welche Werte ergeben sich zu den Zeiten&nbsp; $t = 25 \ {\rm &micro;} \text{s}$&nbsp; und&nbsp; $t = 75 \ {\rm &micro;} \text{s}$?
+
{What is the magnitude function&nbsp; $a(t)$&nbsp; im Zeitbereich? in the time domain? What are the values at times&nbsp; $t = 25 \ {\rm &micro;} \text{s}$&nbsp; and&nbsp; $t = 75 \ {\rm &micro;} \text{s}$?
 
|type="{}"}
 
|type="{}"}
 
$a(t=25 \ {\rm &micro;} \text{s})\ = \ $ { 3 3% } &nbsp;$\text{V}$
 
$a(t=25 \ {\rm &micro;} \text{s})\ = \ $ { 3 3% } &nbsp;$\text{V}$
 
$a(t=75 \ {\rm &micro;} \text{s})\ = \ $ { 1 3% } &nbsp;$\text{V}$
 
$a(t=75 \ {\rm &micro;} \text{s})\ = \ $ { 1 3% } &nbsp;$\text{V}$
  
{Geben Sie die Phasenfunktion&nbsp; $\phi(t)$&nbsp;  im Zeitbereich allgemein an. Welche Werte ergeben sich zu den Zeiten&nbsp; $t = 25 \ {\rm &micro;} \text{s}$&nbsp; und&nbsp; $t = 75 \ {\rm &micro;} \text{s}$?
+
{Give the phase function&nbsp; $\phi(t)$&nbsp;  in the time domain in general. What values result at the times&nbsp; $t = 25 \ {\rm &micro;} \text{s}$&nbsp; and&nbsp; $t = 75 \ {\rm &micro;} \text{s}$?
 
|type="{}"}
 
|type="{}"}
 
$\phi(t=25 \ {\rm &micro;} \text{s}) \ = \ $ { 0. } &nbsp;$\text{Grad}$
 
$\phi(t=25 \ {\rm &micro;} \text{s}) \ = \ $ { 0. } &nbsp;$\text{Grad}$
Line 62: Line 62:
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
  
 
{{ML-Kopf}}
 
{{ML-Kopf}}
  
 
[[File:EN_Sig_A_4_5_a.png|250px|right|frame|Ortskurve zur Zeit&nbsp; $t = 0$]]
 
[[File:EN_Sig_A_4_5_a.png|250px|right|frame|Ortskurve zur Zeit&nbsp; $t = 0$]]
'''(1)'''&nbsp; Verschiebt man alle Diraclinien jeweils um&nbsp; $f_{\rm T} = 50 \ \text{kHz}$&nbsp; nach links, so liegen diese bei&nbsp; $-\hspace{-0.08cm}10 \ \text{kHz}$,&nbsp; $0$&nbsp; und&nbsp; $+10 \ \text{kHz}$.  
+
'''(1)'''&nbsp; If all diraclines are shifted to the left by&nbsp; $f_{\rm C} = 50 \ \text{kHz}$&nbsp;, they are located at&nbsp; $-\hspace{-0.08cm}10 \ \text{kHz}$,&nbsp; $0$&nbsp; and&nbsp; $+10 \ \text{kHz}$.  
*Die Gleichung für&nbsp; $s_{\rm TP}(t)$&nbsp; lautet mit&nbsp; $\omega_{10} = 2 \pi \cdot 10  \ \text{kHz}$:
+
*The equation for&nbsp; $s_{\rm TP}(t)$&nbsp; is with&nbsp; $\omega_{10} = 2 \pi \cdot 10  \ \text{kHz}$:
 
    
 
    
 
:$$s_{\rm TP}(t) = {\rm 1 \hspace{0.05cm} V} - {\rm j}\cdot {\rm 1
 
:$$s_{\rm TP}(t) = {\rm 1 \hspace{0.05cm} V} - {\rm j}\cdot {\rm 1
Line 85: Line 85:
  
  
'''(2)'''&nbsp; Obige Gleichung kann man nach dem&nbsp; [[Signal_Representation/Calculating_With_Complex_Numbers#Darstellung_nach_Betrag_und_Phase|Satz von Euler]]&nbsp; mit&nbsp; $T_0 = 1/f_{\rm N} = 100 \ {\rm &micro;} \text{s}$&nbsp; wie folgt umformen:
+
'''(2)'''&nbsp; The above equation can be transformed according to&nbsp; [[Signal_Representation/Calculating_With_Complex_Numbers#Representation_by_Amplidute_and_Phase|Euler's theorem]]&nbsp; with&nbsp; $T_0 = 1/f_{\rm N} = 100 \ {\rm &micro;} \text{s}$&nbsp; as follows:
 
   
 
   
 
:$$\frac{s_{\rm TP}(t)}{{\rm 1 \hspace{0.05cm} V}}\hspace{-0.05cm} =\hspace{-0.05cm}1\hspace{-0.05cm} - \hspace{-0.05cm}{\rm
 
:$$\frac{s_{\rm TP}(t)}{{\rm 1 \hspace{0.05cm} V}}\hspace{-0.05cm} =\hspace{-0.05cm}1\hspace{-0.05cm} - \hspace{-0.05cm}{\rm
Line 94: Line 94:
 
{t}/{T_0}) .$$
 
{t}/{T_0}) .$$
  
*Damit ist gezeigt, dass&nbsp; $s_{\rm TP}(t)$&nbsp; für alle Zeiten&nbsp; $t$&nbsp; reell ist.  
+
*This shows that&nbsp; $s_{\rm TP}(t)$&nbsp; is real for all times&nbsp; $t$&nbsp .  
*Für die gesuchten Zahlenwerte erhält man:
+
*For the numerical values we are looking for, we obtain:
 
      
 
      
 
:$$s_{\rm TP}(t = {\rm 10 \hspace{0.1cm} {\rm &micro;} s}) = {\rm 1
 
:$$s_{\rm TP}(t = {\rm 10 \hspace{0.1cm} {\rm &micro;} s}) = {\rm 1
Line 114: Line 114:
  
  
'''(3)'''&nbsp; Definitionsgemäß gilt&nbsp; $a(t) = |s_{\rm TP}(t)|$. Damit erhält man folgende Zahlenwerte:
+
'''(3)'''&nbsp;   By definition,&nbsp; $a(t) = |s_{\rm TP}(t)|$. This gives the following numerical values:
 
 
:$$a(t = {\rm 25 \hspace{0.1cm} {\rm &micro;} s}) = s_{\rm TP}(t = {\rm 25
 
:$$a(t = {\rm 25 \hspace{0.1cm} {\rm &micro;} s}) = s_{\rm TP}(t = {\rm 25
 
\hspace{0.05cm}{\rm &micro;} s}) \hspace{0.15 cm}\underline{= {\rm +3 \hspace{0.05cm} V}} ,
 
\hspace{0.05cm}{\rm &micro;} s}) \hspace{0.15 cm}\underline{= {\rm +3 \hspace{0.05cm} V}} ,
Line 125: Line 124:
  
 
   
 
   
'''(4)'''&nbsp; Allgemein gilt für die Phasenfunktion:
+
'''(4)'''&nbsp; In general, the phase function is:
 
   
 
   
 
:$$\phi(t)= {\rm arc} \left[s_{\rm TP}(t)\right]= {\rm arctan}
 
:$$\phi(t)= {\rm arc} \left[s_{\rm TP}(t)\right]= {\rm arctan}
Line 131: Line 130:
 
Re}\left[s_{\rm TP}(t)\right]}$$
 
Re}\left[s_{\rm TP}(t)\right]}$$
  
Aufgrund der Tatsache, dass hier für alle Zeiten&nbsp; ${\rm Im}[s_{\rm TP}(t)] = 0$&nbsp; ist, erhält man hieraus das Ergebnis:
+
Due to the fact that here&nbsp; ${\rm Im}[s_{\rm TP}(t)] = 0$&nbsp; for all times, one obtains the result from this:
* Falls&nbsp; ${\rm Re}[s_{\rm TP}(t)] > 0$&nbsp; gilt, ist die Phase&nbsp; $\phi(t) = 0$.
+
* If&nbsp; ${\rm Re}[s_{\rm TP}(t)] > 0$&nbsp; holds, the phase&nbsp; $\phi(t) = 0$.
* Dagegen gilt bei negativem Realteil: &nbsp; &nbsp; $\phi(t) = \pi$.
+
* On the other hand, if the real part is negative: &nbsp; &nbsp; $\phi(t) = \pi$.
 
   
 
   
  
Wir beschränken uns hier auf den Zeitbereich einer Periode: &nbsp; $0 \leq t \leq T_0$.  
+
We restrict ourselves here to the time range of one period: &nbsp; $0 \leq t \leq T_0$.  
*Im Bereich zwischen&nbsp; $t_1$&nbsp; und&nbsp; $t_2$&nbsp; liegt eine Phase von&nbsp; $180^\circ$&nbsp; vor, ansonsten gilt&nbsp; $\text{Re}[s_{\rm TP}(t)] \geq 0$.  
+
*In the range between&nbsp; $t_1$&nbsp; and&nbsp; $t_2$&nbsp; there is a phase of&nbsp; $180^\circ$&nbsp; otherwise&nbsp; $\text{Re}[s_{\rm LP}(t)] \geq 0$.  
  
*Zur Berechung von&nbsp; $t_1$&nbsp; kann das Ergebnis der Teilaufgabe&nbsp; '''(2)'''&nbsp; herangezogen werden:
+
*To calculate&nbsp; $t_1$&nbsp;, the result of subtask&nbsp; '''(2)'''&nbsp; can be used:
 
   
 
   
 
:$$\sin(2 \pi \cdot  {t_1}/{T_0}) = -0.5 \hspace{0.3cm} \Rightarrow
 
:$$\sin(2 \pi \cdot  {t_1}/{T_0}) = -0.5 \hspace{0.3cm} \Rightarrow
 
\hspace{0.3cm} 2 \pi \cdot {t_1}/{T_0} = 2 \pi \cdot  
 
\hspace{0.3cm} 2 \pi \cdot {t_1}/{T_0} = 2 \pi \cdot  
{7}/{12}\hspace{0.3cm}{\rm (entspricht}\hspace{0.2cm}210^\circ
+
{7}/{12}\hspace{0.3cm}{\rm (corresponds to}\hspace{0.2cm}210^\circ
 
)$$
 
)$$
  
*Daraus erhält man&nbsp; $t_1 = 7/12 · T_0 = 58.33 \ {\rm &micro;} \text{s}$.  
+
*From this one obtains&nbsp; $t_1 = 7/12 · T_0 = 58.33 \ {\rm &micro;} \text{s}$.  
*Durch ähnliche Überlegungen kommt man zum Ergebnis:&nbsp; $t_2 = 11/12 · T_0 = 91.63  \ {\rm &micro;} \text{s}$.
+
*By similar reasoning one arrives at the result:&nbsp; $t_2 = 11/12 · T_0 = 91.63  \ {\rm &micro;} \text{s}$.
 
   
 
   
  
Die gesuchten Werte sind somit:&nbsp;  
+
The values we are looking for are therefore:&nbsp;  
 
:$$\phi(t = 25 \ {\rm &micro;} \text{s}) \; \underline { = 0},$$
 
:$$\phi(t = 25 \ {\rm &micro;} \text{s}) \; \underline { = 0},$$
 
:$$\phi(t = 75 \ {\rm &micro;} \text{s}) \; \underline { = 180^{\circ}}\; (= \pi).$$
 
:$$\phi(t = 75 \ {\rm &micro;} \text{s}) \; \underline { = 180^{\circ}}\; (= \pi).$$

Revision as of 15:48, 10 February 2021

Spektrum des analytischen Signals

We consider a similar transmission scenario as in  task 4.4  (but not the same):

  • a sinusoidal message signal with amplitude  $A_{\rm M} = 2 \ \text{V}$  and the frequency  $f_{\rm M} = 10 \ \text{kHz}$,
  • DSB-Amplitude Modulation without carrier suppression with carrier frequency  $f_{\rm C} = 50 \ \text{kHz}$.


Opposite you see the spectral function  $S_+(f)$  of the analytical signal  $s_+(t)$.

When solving, take into account that the equivalent low pass signal is also in the form

$$s_{\rm LP}(t) = a(t) \cdot {\rm e}^{{\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm} \phi(t)} $$

where  $a(t) ≥ 0$  shall hold. For  $\phi(t)$ , the range of values  $–\pi < \phi(t) \leq +\pi$  is permissible and the generally valid equation applies:

$$\phi(t)= {\rm arctan} \hspace{0.1cm}\frac{{\rm Im}\big[s_{\rm LP}(t)\big]}{{\rm Re}\big[s_{\rm LP}(t)\big]}.$$





Hints:


Questions

1

Calculate the equivalent low pass signal  $s_{\rm LP}(t)$  in the frequency and time domain. What is the value of  $s_{\rm LP}(t)$  at the start time  $t = 0$?

$\text{Re}[s_{\text{TP}}(t=0)]\ = \ $

 $\text{V}$
$\text{Im}[s_{\text{TP}}(t=0 )]\ = \ $

 $\text{V}$

2

What are the values of  $s_{\rm TP}(t)$  at  $t = 10 \ {\rm µ} \text{s}= T_0/10$,     $t = 25 \ {\rm µ} \text{s}= T_0/4$,     $t = 75 \ {\rm µ} \text{s}= 3T_0/4$  and  $T_0 = 100 \ {\rm µ}s$?
Show that all values are purely real.

$\text{Re}[s_{\text{LP}}(t=10 \ {\rm µ} \text{s})]\ = \ $

 $\text{V}$
$\text{Re}[s_{\text{LP}}(t=25 \ {\rm µ} \text{s})] \ = \ $

 $\text{V}$
$\text{Re}[s_{\text{LP}}(t=75 \ {\rm µ} \text{s})]\ = \ $

 $\text{V}$
$\text{Re}[s_{\text{LP}}(t=100 \ {\rm µ} \text{s})]\ = \ $

 $\text{V}$

3

What is the magnitude function  $a(t)$  im Zeitbereich? in the time domain? What are the values at times  $t = 25 \ {\rm µ} \text{s}$  and  $t = 75 \ {\rm µ} \text{s}$?

$a(t=25 \ {\rm µ} \text{s})\ = \ $

 $\text{V}$
$a(t=75 \ {\rm µ} \text{s})\ = \ $

 $\text{V}$

4

Give the phase function  $\phi(t)$  in the time domain in general. What values result at the times  $t = 25 \ {\rm µ} \text{s}$  and  $t = 75 \ {\rm µ} \text{s}$?

$\phi(t=25 \ {\rm µ} \text{s}) \ = \ $

 $\text{Grad}$
$\phi(t=75\ {\rm µ} \text{s})\ = \ $

 $\text{Grad}$


Solution

Ortskurve zur Zeit  $t = 0$

(1)  If all diraclines are shifted to the left by  $f_{\rm C} = 50 \ \text{kHz}$ , they are located at  $-\hspace{-0.08cm}10 \ \text{kHz}$,  $0$  and  $+10 \ \text{kHz}$.

  • The equation for  $s_{\rm TP}(t)$  is with  $\omega_{10} = 2 \pi \cdot 10 \ \text{kHz}$:
$$s_{\rm TP}(t) = {\rm 1 \hspace{0.05cm} V} - {\rm j}\cdot {\rm 1 \hspace{0.05cm} V} \cdot {\rm e}^{{\rm j}\hspace{0.05cm} \omega_{\rm 10} \hspace{0.05cm} t }+{\rm j}\cdot {\rm 1 \hspace{0.05cm} V} \cdot {\rm e}^{-{\rm j}\hspace{0.05cm} \omega_{\rm 10} \hspace{0.05cm} t }$$
$$\Rightarrow \hspace{0.3cm} s_{\rm TP}(t = 0) = {\rm 1 \hspace{0.05cm} V} - {\rm j}\cdot {\rm 1 \hspace{0.05cm} V} +{\rm j}\cdot {\rm 1 \hspace{0.05cm} V}= {\rm 1 \hspace{0.05cm} V}.$$
$$\Rightarrow \hspace{0.3cm} {\rm Re}[s_{\rm TP}(t = 0) ] \hspace{0.15 cm}\underline{= {+\rm 1 \hspace{0.05cm} V}}, \hspace{0.2cm}{\rm Im}[s_{\rm TP}(t = 0) ] \hspace{0.15 cm}\underline{= 0} .$$


(2)  The above equation can be transformed according to  Euler's theorem  with  $T_0 = 1/f_{\rm N} = 100 \ {\rm µ} \text{s}$  as follows:

$$\frac{s_{\rm TP}(t)}{{\rm 1 \hspace{0.05cm} V}}\hspace{-0.05cm} =\hspace{-0.05cm}1\hspace{-0.05cm} - \hspace{-0.05cm}{\rm j}\cdot \cos({ \omega_{\rm 10}\hspace{0.05cm} t }) \hspace{-0.05cm}+\hspace{-0.05cm} \sin({ \omega_{\rm 10}\hspace{0.05cm} t }) \hspace{-0.05cm}+\hspace{-0.05cm}{\rm j}\cdot \cos({ \omega_{\rm 10}\hspace{0.05cm} t })\hspace{-0.05cm} + \hspace{-0.05cm} \sin({ \omega_{\rm 10}\hspace{0.05cm} t }) = 1+2 \cdot \sin(2 \pi {t}/{T_0}) .$$
  • This shows that  $s_{\rm TP}(t)$  is real for all times  $t$&nbsp .
  • For the numerical values we are looking for, we obtain:
$$s_{\rm TP}(t = {\rm 10 \hspace{0.1cm} {\rm µ} s}) = {\rm 1 \hspace{0.05cm} V} \cdot \left[1+2 \cdot \sin(36^\circ)\right]\hspace{0.15 cm}\underline{={{\rm +2.176 \hspace{0.05cm} V}}},$$
$$s_{\rm TP}(t = {\rm 25 \hspace{0.1cm} {\rm µ} s}) = {\rm 1 \hspace{0.05cm} V} \cdot \left[1+2 \cdot \sin(90^\circ)\right]\hspace{0.15 cm}\underline{={{\rm +3 \hspace{0.05cm} V}}},$$
$$s_{\rm TP}(t = {\rm 75 \hspace{0.1cm} {\rm µ} s}) = {\rm 1 \hspace{0.05cm} V} \cdot \left[1+2 \cdot \sin(270^\circ)\right]\hspace{0.15 cm}\underline{= -{{\rm 1 \hspace{0.05cm} V}}},$$
$$s_{\rm TP}(t = {\rm 100 \hspace{0.1cm}{\rm µ} s}) = s_{\rm TP}(t = 0) \hspace{0.15 cm}\underline{={{\rm +1 \hspace{0.05cm} V}}}.$$


(3)  By definition,  $a(t) = |s_{\rm TP}(t)|$. This gives the following numerical values:

$$a(t = {\rm 25 \hspace{0.1cm} {\rm µ} s}) = s_{\rm TP}(t = {\rm 25 \hspace{0.05cm}{\rm µ} s}) \hspace{0.15 cm}\underline{= {\rm +3 \hspace{0.05cm} V}} , \hspace{4.15 cm}$$
$$a(t = {\rm 75 \hspace{0.1cm} {\rm µ} s}) = |s_{\rm TP}(t = {\rm 75 \hspace{0.05cm} {\rm µ} s})| \hspace{0.15 cm}\underline{= {\rm +1 \hspace{0.05cm} V}} .$$


(4)  In general, the phase function is:

$$\phi(t)= {\rm arc} \left[s_{\rm TP}(t)\right]= {\rm arctan} \hspace{0.1cm}\frac{{\rm Im}\left[s_{\rm TP}(t)\right]}{{\rm Re}\left[s_{\rm TP}(t)\right]}$$

Due to the fact that here  ${\rm Im}[s_{\rm TP}(t)] = 0$  for all times, one obtains the result from this:

  • If  ${\rm Re}[s_{\rm TP}(t)] > 0$  holds, the phase  $\phi(t) = 0$.
  • On the other hand, if the real part is negative:     $\phi(t) = \pi$.


We restrict ourselves here to the time range of one period:   $0 \leq t \leq T_0$.

  • In the range between  $t_1$  and  $t_2$  there is a phase of  $180^\circ$  otherwise  $\text{Re}[s_{\rm LP}(t)] \geq 0$.
  • To calculate  $t_1$ , the result of subtask  (2)  can be used:
$$\sin(2 \pi \cdot {t_1}/{T_0}) = -0.5 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} 2 \pi \cdot {t_1}/{T_0} = 2 \pi \cdot {7}/{12}\hspace{0.3cm}{\rm (corresponds to}\hspace{0.2cm}210^\circ )$$
  • From this one obtains  $t_1 = 7/12 · T_0 = 58.33 \ {\rm µ} \text{s}$.
  • By similar reasoning one arrives at the result:  $t_2 = 11/12 · T_0 = 91.63 \ {\rm µ} \text{s}$.


The values we are looking for are therefore: 

$$\phi(t = 25 \ {\rm µ} \text{s}) \; \underline { = 0},$$
$$\phi(t = 75 \ {\rm µ} \text{s}) \; \underline { = 180^{\circ}}\; (= \pi).$$