Difference between revisions of "Aufgaben:Exercise 4.15Z: Statements of the Covariance Matrix"

From LNTwww
m (Text replacement - "[[Stochastische_Signaltheorie/" to "[[Theory_of_Stochastic_Signals/")
m (Text replacement - "Category:Aufgaben zu Stochastische Signaltheorie" to "Category:Theory of Stochastic Signals: Exercises")
Line 111: Line 111:
  
  
[[Category:Aufgaben zu Stochastische Signaltheorie|^4.7 N-dimensionale Zufallsgrößen^]]
+
[[Category:Theory of Stochastic Signals: Exercises|^4.7 N-dimensionale Zufallsgrößen^]]

Revision as of 13:44, 23 March 2021

Sind die Zufallssignale korreliert?

Gegeben seien die beiden Gaußschen Zufallsgrößen  $u$  und  $v$, jeweils mittelwertfrei und mit Varianz  $\sigma^2 = 1$.

Daraus werden durch Linearkombination drei neue Zufallsgrößen gebildet:

$$x_1 = A_1 \cdot u + B_1 \cdot v,$$
$$x_2 = A_2 \cdot u + B_2 \cdot v,$$
$$x_3 = A_3 \cdot u + B_3 \cdot v.$$

Vorausgesetzt wird, dass in allen betrachteten Fällen  $(i = 1, 2, 3)$  gilt:

$$A_i^2 + B_i^2 =1.$$

Die Grafik zeigt die Signale $x_1(t)$, $x_2(t)$ und $x_3(t)$ für den Fall, der in der Teilaufgabe  (3)  betrachtet werden soll:

  • $A_1 = B_2 = 1$,
  • $A_2 = B_2 = 0$,
  • $A_3 = 0.8, \ B_3 = 0.6$,


Der Korrelationskoeffizient  $\rho_{ij}$  zwischen den Zufallsgrößen  $x_i$  und  $x_j$  wird wie folgt angegeben:

$$\rho_{ij} = \frac{A_i \cdot A_j + B_i \cdot B_j}{\sqrt{(A_i^2 + B_i^2)(A_j^2 + B_j^2)}} = A_i \cdot A_j + B_i \cdot B_j.$$

Unter der hier implizit getroffenen Annahme  $\sigma_1^2 = \sigma_2^2 = \sigma_3^2 = 1$  lautet die Kovarianzmatrix  $\mathbf{K}$:

$${\mathbf{K}} =\left[ K_{ij} \right] = \left[ \begin{array}{ccc} 1 & \rho_{12} & \rho_{13} \\ \rho_{12} & 1 & \rho_{23} \\ \rho_{13} & \rho_{23} & 1 \end{array} \right] .$$

Diese ist bei mittelwertfreien Zufallsgrößen identisch mit der Korrelationsmatrix  $\mathbf{R}$.





Hinweise:



Fragebogen

1

Welche der folgenden Aussagen sind zutreffend? Begründen Sie Ihre Ergebnisse.

$\mathbf{K}$  kann bei geeigneter Wahl von  $A_1$, ... , $B_3$  eine Diagonalmatrix sein.  Oder anders ausgedrückt:   $\rho_{12} = \rho_{13} = \rho_{23} = 0$  ist möglich.
Bei geeigneter Wahl der Parameter  $A_1$, ... , $B_3$  kann genau einer der Korrelationskoeffizienten  $\rho_{ij} = 0$  sein.
Bei geeigneter Wahl der Parameter  $A_1$, ... , $B_3$  können genau zwei der Korrelationskoeffizienten  $\rho_{ij} = 0$  sein.
Bei geeigneter Wahl der Parameter  $A_1$, ... , $B_3$  können alle drei Korrelationskoeffizienten  $\rho_{ij} \ne 0$  sein.

2

Wie lauten die Matrixelemente von  $\mathbf{K}$  mit  $A_1 = A_2 = - A_3$  und  $B_1 = B_2 = - B_3$ ?

$\rho_{12} \ = \ $

$\rho_{13} \ = \ $

$\rho_{23} \ = \ $

3

Berechnen Sie die Koeffizienten  $\rho_{ij}$  für den in der Grafik dargestellten Fall:  $A_1 = 1$,  $B_1 = 0$,  $A_2 = 0$,  $B_2 = 1$,  $A_3 = 0.8$,  $B_3 = 0.6$.

$\rho_{12} \ = \ $

$\rho_{13} \ = \ $

$\rho_{23} \ = \ $


Musterlösung

(1)  Nur die zweite und die letzte Aussage treffen zu:

  • Die Aussage 2 beschreibt den in der Grafik betrachteten Fall, dass zwei Größen  $($hier:   $x_1$  und  $x_2)$  unkorreliert sind, während  $x_3$  statistische Bindungen bezüglich  $x_1$  $($über die Größe  $u)$  und auch in Bezug zu  $x_3$  $($bedingt durch die Zufallsgröße $v)$  aufweist.
  • Die Kombination  $\rho_{12} = \rho_{13} = \rho_{23} = 0$   ist bei der hier gegebenen Struktur dagegen nicht möglich.  Dazu würde man eine dritte statistisch unabhängige Zufallsgröße  $w$  benötigen und es müsste beispielsweise  $x_1 = k_1 \cdot u$ ,  $x_2 = k_2 \cdot v$  und  $x_3 = k_3 \cdot w$  gelten.
  • Die dritte Aussage ist ebenfalls nicht zutreffend:  Sind  $x_1$  und  $x_2$  unkorreliert und gleichzeitig auch  $x_1$  und  $x_3$, so können auch zwischen  $x_2$  und  $x_3$  keine statistischen Bindungen bestehen.
  • Im Allgemeinen werden allerdings sowohl  $\rho_{12}$  als auch  $\rho_{13}$  und  $\rho_{23}$  von Null verschieden sein.
  • Ein ganz einfaches Beispiel hierfür wird in der Teilaufgabe  (2)  betrachtet.


(2)  In diesem Fall sind die Größen  $x_1 = x_2$  vollständig  $($zu  $100\%)$  korreliert.

  • Mit  $A_2 = A_1$  und  $B_2 = B_1$  erhält man für den gemeinsamen Korrelationskoeffizienten:
$$\rho_{12} = A_1 \cdot A_2 + B_1 \cdot B_2 = A_1^2 + B_1^2 \hspace{0.15cm}\underline{=1}.$$
  • In gleicher Weise gilt mit  $A_3 = -A_1$  und  $B_3 = -B_1$:
$$\rho_{13} = A_1 \cdot A_3 + B_1 \cdot B_3 = -(A_1^2 + B_1^2) \hspace{0.15cm}\underline{=-1 \hspace{0.1cm}(= \rho_{23})}.$$


(3)  Mit diesem Parametersatz ist  $x_1$  identisch mit der Zufallsgröße  $u$, während  $x_2 = v$  gilt.

  • Da  $u$  und  $v$  statistisch voneinander unabhängig sind, ergibt sich  $\rho_{12} \hspace{0.15cm}\underline{ = 0}.$
  • Demgegenüber gilt für die beiden weiteren Korrelationskoeffizienten:
$$\rho_{13} = A_1 \cdot A_3 + B_1 \cdot B_3 = 1 \cdot 0.8 + 0 \cdot 0.6 \hspace{0.15cm}\underline{ = 0.8},$$
$$\rho_{23} = A_2 \cdot A_3 + B_2 \cdot B_3 = 0 \cdot 0.8 + 1 \cdot 0.6 \hspace{0.15cm}\underline{ = 0.6}.$$
  • Für ein (sehr gut) geschultes Auge ist aus der Grafik auf der Angabenseite zu erkennen, dass das Signal  $x_3(t)$  mehr Ähnlichkeiten mit  $x_1(t)$  aufweist als mit  $x_2(t)$.
  • Diese Tatsache drücken auch die berechneten Korrelationskoeffizienten aus.
  • Seien Sie aber nicht frustriert, wenn Sie die unterschiedliche Korrelation in den Signalverläufen nicht erkennen.