Difference between revisions of "Aufgaben:Exercise 2.2Z: Non-Linearities"

From LNTwww
Line 6: Line 6:
 
We start from the triangular signal  ${x(t)}$  according to the figure above.  
 
We start from the triangular signal  ${x(t)}$  according to the figure above.  
  
If we apply this signal to an amplitude limiter, we get the signal
+
*If we apply this signal to an amplitude limiter, we get the signal
 
:$$y(t)=\left\{ {x(t)\atop \rm 1V}{\hspace{0.5cm} {\rm for}\quad x(t)\le \rm 1V \atop {\rm else}}\right..$$
 
:$$y(t)=\left\{ {x(t)\atop \rm 1V}{\hspace{0.5cm} {\rm for}\quad x(t)\le \rm 1V \atop {\rm else}}\right..$$
A second non-linearity provides the signal
+
*Another non-linearity provides the signal
 
:$$z(t)=x^2(t).$$
 
:$$z(t)=x^2(t).$$
 
The DC signal components are designated  $x_0$,  $y_0$  and  $z_0$  in the following.  
 
The DC signal components are designated  $x_0$,  $y_0$  and  $z_0$  in the following.  
 
 
  
  
Line 20: Line 18:
  
 
''Hint:''  
 
''Hint:''  
*This exercise belongs to the chapter  [[Signal_Representation/Direct_Current_Signal_-_Limit_Case_of_a_Periodic_Signal|Direct Current Signal - Limit Case of a Periodic Signal]].
+
*This task belongs to chapter  [[Signal_Representation/Direct_Current_Signal_-_Limit_Case_of_a_Periodic_Signal|Direct Current Signal - Limit Case of a Periodic Signal]].
 
   
 
   
 
 
 
  
  

Revision as of 16:00, 12 April 2021

DC component after non-linearities

We start from the triangular signal  ${x(t)}$  according to the figure above.

  • If we apply this signal to an amplitude limiter, we get the signal
$$y(t)=\left\{ {x(t)\atop \rm 1V}{\hspace{0.5cm} {\rm for}\quad x(t)\le \rm 1V \atop {\rm else}}\right..$$
  • Another non-linearity provides the signal
$$z(t)=x^2(t).$$

The DC signal components are designated  $x_0$,  $y_0$  and  $z_0$  in the following.




Hint:


Questions

1

Determine the DC signal component  $x_0$  of the signal  ${x(t)}$.

$x_0\ = \ $

  $\text{V}$

2

Determine the DC signal component  $y_0$  of the signal  ${y(t)}$.

$y_0\ = \ $

  $\text{V}$

3

Determine the DC signal component  $z_0$  of the signal  ${z(t)}$.

$z_0\ = \ $

  $\text{V}^2$


Solution

(1)  The DC signal  $x_0$  is the mean value of the signal  ${x(t)}$. Averaging over a period duration  $T_0 = 1 \, \text{ms}$ is sufficient. One obtains:

$$x_0=\frac{1}{T_0}\int^{T_0}_0 x(t)\,{\rm d} t \hspace{0.15cm}\underline{=1\,\rm V}.$$


(2)  In half the time  ${y(t)} = 1\, \text{V}$, in the other half is is between  $0$  and  $1\, \text{V}$  with the mean value at  $0.5 \,\text{V}$  ⇒   $y_0 \hspace{0.15cm}\underline{= 0.75 \,\text{V}}$.


(3)  Due to the periodicity and symmetry, averaging in the range from  $0$  bis  $T_0/2$ is sufficient.

  • With the corresponding characteristic curve, the following then applies::
$$z_0=\frac{1}{T_0/2}\int^{T_0/2}_0 x^2(t)\,{\rm d}t=\frac{4\rm V^2}{T_0/2}\int^{T_0/2}_0 ({2t}/{T_0})^2\, {\rm d}t={4}/{3}\rm \;V^2 \hspace{0.15cm}\underline{\approx1.333\rm \;V^2}.$$