Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

Difference between revisions of "Aufgaben:Exercise 3.7Z: Rectangular Signal with Echo"

From LNTwww
m (Text replacement - "Dirac impulse" to "Dirac delta")
 
Line 62: Line 62:
 
{{ML-Kopf}}
 
{{ML-Kopf}}
 
'''(1)'''&nbsp;  The <u>second suggested solution</u> is correct:
 
'''(1)'''&nbsp;  The <u>second suggested solution</u> is correct:
*The impulse response is equal to the received signal&nbsp; r(t), if a single Dirac impulse is present at the input at time&nbsp; t=0&nbsp;:
+
*The impulse response is equal to the received signal&nbsp; r(t), if a single Dirac delta is present at the input at time&nbsp; t=0&nbsp;:
 
:h(t)=δ(t)+αδ(tτ).
 
:h(t)=δ(t)+αδ(tτ).
  

Latest revision as of 09:05, 26 May 2021

Transmission signal  s(t), and 
reception signal  r(t)  with echo

We consider a periodic rectangular signal  s(t)  with the possible amplitude values  0 V  and  2 V  and the period duration  T0=T=1 ms.  At the jump points, e.g. at  t=T/4, the signal value are  1 V.  The DC component  (i.e. the Fourier coefficient  A0)  of the signal is  1 V, too.

Further applies:

  • Due to symmetry (even function), all sine coefficients  Bn=0.
  • The coefficients  An  with even  n  are also zero.
  • For odd values of  n,  the following applies:
An=(1)(n1)/24Vnπ.

The signal  s(t)  reaches the receiver via two paths (see sketch below):

  • Once on the direct path and secondly via a secondary path.
  • The latter is characterised by the attenuation factor  α  and the transit time  τ .
  • Therefore, the following applies to the received signal:
r(t)=s(t)+αs(tτ).

The frequency response of the channel is  H(f)=R(f)/S(f),  the impulse response is denoted by  h(t) .





Hints:


Questions

1

Which statements are true regarding the impulse response  h(t)?

For  0t<τ  holds  h(t)=1, and for  t>τ  holds   h(t)=1+α.
It holds that  h(t)=δ(t)+αδ(tτ).
h(t)  has a Gaussian shape.

2

Calculate the reception signal  r(t)  for the channel parameters  α=0.5  and  τ=T/4.
What values result at the given times?

r(t=0.2T) = 

 V
r(t=0.3T) = 

 V

3

Calculate the reception signal  r(t)  with  α=1  and  τ=T/2.  Interpret the result in the frequency domain.
What value results for  t=T/2?

r(t=T/2) = 

 V


Solution

(1)  The second suggested solution is correct:

  • The impulse response is equal to the received signal  r(t), if a single Dirac delta is present at the input at time  t=0 :
h(t)=δ(t)+αδ(tτ).


Convolution of square wave signal  s(t)  and impulse response  h(t)

(2)  It holds  r(t)=s(t)h(t).  This convolution operation is most easily performed graphically:

The values of the received signal are generally:

  • 0.00<t/T<0.25:r(t)=+1 V,
  • 0.25<t/T<0.50:r(t)=1 V,
  • 0.50<t/T<0.75:r(t)=0 V,
  • 0.75<t/T<1.00:r(t)=+2 V.


The values we are looking for are thus

r(t=0.2T)=+1 V_,
r(t=0.3·T)=1 V_.


(3)  Using a similar procedure as in  (2),  a direct signal  (DC)  of  2 V  is obtained for  r(t) :

  • The gaps in the signal  s(t)  are completely filled by the echo  s(tT/2).
  • This result can also be derived in the frequency domain.  The channel frequency response is with  α=1  and  τ=T/2:
H(f)=1+1ejπfT=1+cos(πfT)jsin(πfT).
  • Apart from the DC component, the input signal  s(t)  only has components at  f=f0=1/Tf=3f0f=5f0,  etc..
  • At these frequencies, however, both the real– and the imaginary part of  H(f)  are equal to zero.
  • Thus, for the output spectrum with  A0=1 V  and  H(f=0)=2  we obtain:
R(f)=A0H(f=0)δ(f)=2Vδ(f).

The inverse Fourier transformation thus also yields  r(t)=2 V= const_.