Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

Difference between revisions of "Applets:Complementary Gaussian Error Functions"

From LNTwww
m (Text replacement - "”" to """)
m (Text replacement - "„" to """)
Line 50: Line 50:
 
:pB=1/2erfc(4/2)=1/2erfc(2.828)1/2erfc(2.8)=0.375104.
 
:pB=1/2erfc(4/2)=1/2erfc(2.828)1/2erfc(2.8)=0.375104.
 
*The first value is more correct.&nbsp; In the second method of calculation, one must round or &ndash; even better &ndash; interpolate, which is very difficult due to the strong nonlinearity of this function.<br>
 
*The first value is more correct.&nbsp; In the second method of calculation, one must round or &ndash; even better &ndash; interpolate, which is very difficult due to the strong nonlinearity of this function.<br>
*Accordingly, with the given numerical values, Q(x)&nbsp; is more suitable.&nbsp; However, outside of exercise examples&nbsp; s0/σd&nbsp; will usually have a &bdquo;curvilinear" value.&nbsp; In this case, of course,&nbsp; Q(x)&nbsp; offers no advantage over&nbsp; 1/2erfc(x). }}
+
*Accordingly, with the given numerical values, Q(x)&nbsp; is more suitable.&nbsp; However, outside of exercise examples&nbsp; s0/σd&nbsp; will usually have a "curvilinear" value.&nbsp; In this case, of course,&nbsp; Q(x)&nbsp; offers no advantage over&nbsp; 1/2erfc(x). }}
  
  
Line 112: Line 112:
 
*The conversion is done according to the equation&nbsp; x=100.05ρ[dB].&nbsp; For&nbsp; ρ=0 dB&nbsp; we get&nbsp; x=1 &nbsp; &rArr; &nbsp; Q(ρ=0 dB)=Q(x=1)=1.5866101.
 
*The conversion is done according to the equation&nbsp; x=100.05ρ[dB].&nbsp; For&nbsp; ρ=0 dB&nbsp; we get&nbsp; x=1 &nbsp; &rArr; &nbsp; Q(ρ=0 dB)=Q(x=1)=1.5866101.
 
*For&nbsp; ρ=5 dB&nbsp; we get&nbsp; x=1.1778 &nbsp; &rArr; &nbsp; Q(ρ=5 dB)=Q(x=1.778)=3.7679102.&nbsp; From the left diagram:&nbsp; Q(x=1.8)=3.593102.
 
*For&nbsp; ρ=5 dB&nbsp; we get&nbsp; x=1.1778 &nbsp; &rArr; &nbsp; Q(ρ=5 dB)=Q(x=1.778)=3.7679102.&nbsp; From the left diagram:&nbsp; Q(x=1.8)=3.593102.
*For&nbsp; ρ=10 dB&nbsp; we get&nbsp; x=3.162 &nbsp; &rArr; &nbsp; Q(ρ=10 dB)=Q(x=3.162)=7.827104.&nbsp; After &bdquo;quantization":&nbsp; Q(x=3.15)=8.1635104.
+
*For&nbsp; ρ=10 dB&nbsp; we get&nbsp; x=3.162 &nbsp; &rArr; &nbsp; Q(ρ=10 dB)=Q(x=3.162)=7.827104.&nbsp; After "quantization":&nbsp; Q(x=3.15)=8.1635104.
  
  
Line 143: Line 143:
 
&nbsp; &nbsp; '''(K)''' &nbsp; &nbsp; Variationsmöglichkeit für die graphischen Darstellungen  
 
&nbsp; &nbsp; '''(K)''' &nbsp; &nbsp; Variationsmöglichkeit für die graphischen Darstellungen  
  
&bdquo;+" (Vergrößern),  
+
"+" (Vergrößern),  
  
&bdquo;" (Verkleinern)
+
"" (Verkleinern)
  
&bdquo;o" (Zurücksetzen)
+
"o" (Zurücksetzen)
  
&bdquo;" (Verschieben nach links),  usw.
+
"" (Verschieben nach links),  usw.
 
<br clear=all>
 
<br clear=all>
 
==About the Authors==
 
==About the Authors==
Line 155: Line 155:
 
This interactive calculation tool was designed and implemented at the&nbsp; [https://www.ei.tum.de/en/lnt/home/ Institute for Communications Engineering]&nbsp; at the&nbsp; [https://www.tum.de/en Technical University of Munich].  
 
This interactive calculation tool was designed and implemented at the&nbsp; [https://www.ei.tum.de/en/lnt/home/ Institute for Communications Engineering]&nbsp; at the&nbsp; [https://www.tum.de/en Technical University of Munich].  
 
*The first version was created in 2007 by&nbsp; [[Biographies_and_Bibliographies/An_LNTwww_beteiligte_Studierende#Thomas_Gro.C3.9Fer_.28Diplomarbeit_LB_2006.2C_danach_freie_Mitarbeit_bis_2010.29|Thomas Großer]]&nbsp; as part of his diploma thesis with “FlashMX – Actionscript” (Supervisor: [[Biographies_and_Bibliographies/An_LNTwww_beteiligte_Mitarbeiter_und_Dozenten#Prof._Dr.-Ing._habil._G.C3.BCnter_S.C3.B6der_.28am_LNT_seit_1974.29|Günter Söder]]).  
 
*The first version was created in 2007 by&nbsp; [[Biographies_and_Bibliographies/An_LNTwww_beteiligte_Studierende#Thomas_Gro.C3.9Fer_.28Diplomarbeit_LB_2006.2C_danach_freie_Mitarbeit_bis_2010.29|Thomas Großer]]&nbsp; as part of his diploma thesis with “FlashMX – Actionscript” (Supervisor: [[Biographies_and_Bibliographies/An_LNTwww_beteiligte_Mitarbeiter_und_Dozenten#Prof._Dr.-Ing._habil._G.C3.BCnter_S.C3.B6der_.28am_LNT_seit_1974.29|Günter Söder]]).  
*In 2018 the program was redesigned by&nbsp; [[Biographies_and_Bibliographies/An_LNTwww_beteiligte_Studierende#Xiaohan_Liu_.28Bachelorarbeit_2018.29|Xiaohan Liu]]&nbsp; as part of her bachelor thesis&nbsp; (Supervisor: [[Biographies_and_Bibliographies/Beteiligte_der_Professur_Leitungsgebundene_%C3%9Cbertragungstechnik#Tasn.C3.A1d_Kernetzky.2C_M.Sc._.28bei_L.C3.9CT_seit_2014.29|Tasnád Kernetzky]] ) via &bdquo;HTML5".
+
*In 2018 the program was redesigned by&nbsp; [[Biographies_and_Bibliographies/An_LNTwww_beteiligte_Studierende#Xiaohan_Liu_.28Bachelorarbeit_2018.29|Xiaohan Liu]]&nbsp; as part of her bachelor thesis&nbsp; (Supervisor: [[Biographies_and_Bibliographies/Beteiligte_der_Professur_Leitungsgebundene_%C3%9Cbertragungstechnik#Tasn.C3.A1d_Kernetzky.2C_M.Sc._.28bei_L.C3.9CT_seit_2014.29|Tasnád Kernetzky]] ) via "HTML5".
 
*Last revision and English version 2021 by&nbsp; [[Biografien_und_Bibliografien/An_LNTwww_beteiligte_Studierende#Carolin_Mirschina_.28Ingenieurspraxis_Math_2019.2C_danach_Werkstudentin.29|Carolin Mirschina]]&nbsp; in the context of a working student activity.&nbsp; Translation using DEEPL.com.
 
*Last revision and English version 2021 by&nbsp; [[Biografien_und_Bibliografien/An_LNTwww_beteiligte_Studierende#Carolin_Mirschina_.28Ingenieurspraxis_Math_2019.2C_danach_Werkstudentin.29|Carolin Mirschina]]&nbsp; in the context of a working student activity.&nbsp; Translation using DEEPL.com.
  

Revision as of 16:44, 28 May 2021

Open Applet in new Tab   Deutsche Version Öffnen


Applet Description


This applet allows the calculation and graphical representation of the (complementary) Gaussian error functions  Q(x)  and  1/2erfc(x), which are of great importance for error probability calculation.

  • Both the abscissa and the function value can be represented either linearly or logarithmically.
  • For both functions an upper bound  (UB)  and a lower bound  (LB)  are given.

Theoretical Background


In the study of digital transmission systems, it is often necessary to determine the probability that a (mean-free) Gaussian distributed random variable  x  with variance  σ2  exceeds a given value  x0.  For this probability holds:

Pr(x>x0)=Q(x0σ)=1/2erfc(x02σ).

The function Q(x)

The function  Q(x)  is called the  complementary Gaussian error integral.  The following calculation rule applies:

Q(x)=12π+xeu2/2du.
  • This integral cannot be solved analytically and must be taken from tables if one does not have this applet available.
  • Specially for larger  x  values  (i.e., for small error probabilities), the bounds given below provide a useful estimate for  Q(x), which can also be calculated without tables.
  • An upper bound  (UB)  of this function is:
QUB(x)=Upper Bound [Q(x)]=12πxex2/2>Q(x).
  • Correspondingly, for the lower bound  (LB):
QLB(x)=Lower Bound [Q(x)]=11/x22πxex2/2=QUB(x)(11/x2)<Q(x).

However, in many program libraries, the function  Q(x)  cannot be found.

The function 1/2erfc(x)

On the other hand, in almost all program libraries, you can find the  Complementary Gaussian Error Function:

erfc(x)=2π+xeu2du,

which is related to  Q(x)  as follows:   Q(x)=1/2erfc(x/2).

  • Since in almost all applications this function is used with the factor  1/2, in this applet exactly this function was realized:
1/2erfc(x)=1π+xeu2du.
  • Once again, an upper and lower bound can be specified for this function:
Upper Bound [1/2erfc(x)]=1π2xex2,
Lower Bound [1/2erfc(x)]=11/(2x2)π2xex2.

When which function offers advantages?

Example 1:  We consider binary baseband transmission. Here, the bit error probability  pB=Q(s0/σd), where the useful signal can take the values  ±s0  and the noise root mean square value  σd .

It is assumed that tables are available listing the argument of the two Gaussian error functions at distance  0.1.  With  s0/σd=4  one obtains for the bit error probability according to the function  Q(x):

pB=Q(4)0.317104.

According to the second equation, we get:

pB=1/2erfc(4/2)=1/2erfc(2.828)1/2erfc(2.8)=0.375104.
  • The first value is more correct.  In the second method of calculation, one must round or – even better – interpolate, which is very difficult due to the strong nonlinearity of this function.
  • Accordingly, with the given numerical values, Q(x)  is more suitable.  However, outside of exercise examples  s0/σd  will usually have a "curvilinear" value.  In this case, of course,  Q(x)  offers no advantage over  1/2erfc(x).


Example 2:  With the energy per bit  (EB)  and the noise power density  (N0)  the bit error probability of Binary Phase Shift Keying  (BPSK) is:

pB=Q(2EB/N0)=1/2erfc(EB/N0).

For the numerical values  EB=16mWs  and  N0=1mW/Hz  we obtain:

pB=Q(42)=1/2erfc(4).
  • The first way leads to the result  pB=Q(5.657)Q(5.7)=0.6108, while   1/2erfc(x)  here the more correct value  pB0.771108  yields.
  • As in the first example, however, you can see:   The functions  Q(x)  and  1/2erfc(x)  are basically equally well suited.
  • Advantages or disadvantages of one or the other function arise only for concrete numerical values.


Exercises

  • First select the number  (1,2,...)  of the exercise.  The number  0  corresponds to a "Reset":  Same setting as at program start.
  • A task description is displayed.  The parameter values ​​are adjusted.  Solution after pressing "Show solution".


(1)   Find the values of the function  Q(x)  for  x=1x=2x=4  and  x=6.  Interpret the graphs for linear and logarithmic ordinates.

  • The applet returns the values  Q(1)=1.5866101Q(2)=2.275102Q(4)=3.1671105  and  Q(6)=9.86591010.
  • With linear ordinate, the values for  x>3  are indistinguishable from the zero line.  More interesting is the plot with logarithmic ordinate.


(2)   Evaluate the two bounds  UB(x)=Upper Bound [Q(x)]  and  LB(x)=Lower Bound [Q(x)]  for the  Q  function.

  • For  x2  the upper bound is only slightly above  Q(x)  and the lower bound is only slightly below  Q(x)
  • For example:  Q(x=4)=3.1671105   ⇒   LB(x=4)=3.1366105,   UB(x=4)=3.3458105.
  • The upper bound has greater significance for assessing a communications system than "LB",  since this corresponds to a "worst case" consideration.


(3)   Try to use the app to determine  Q(x=222.828)  as accurately as possible despite the quantization of the input parameter.

  • The program returns for  x=2.8  the too large result  2.5551103  and for  x=2.85  the result  2.186103.  The exact value lies in between.
  • But it also holds:  Q(x=22)=0.5erfc(x=2).  This gives the exact value  Q(x=22)=2.3389103.


(4)   Find the values of the function  0.5erfc(x)  for  x=1x=2x=3  and  x=4.  Interpret the exact results and the bounds.

  • The applet returns:  0.5erfc(1)=7.8651020.5erfc(2)=2.33891030.5erfc(3)=1.1045105  and  0.5erfc(4)=7.7086109.
  • All the above statements about  Q(x)  with respect to suitable representation type and upper and lower bounds also apply to the function  0.5erfc(x).


(5)   The results of  (4)  are now to be converted for the case of a logarithmic abscissa.  The conversion is done according to  ρ[dB]=20lg(x).

  • The linear abscissa value  x=1  leads to the logarithmic abscissa value  ρ=0 dB   ⇒   0.5erfc(ρ=0 dB)=0.5erfc(x=1)=7.865102.
  • Similarly  0.5erfc(ρ=6.021 dB)=0.5erfc(x=2)=2.3389103,     0.5erfc(ρ=9.542 dB)=0.5erfc(3)=1.1045105,   
  • 0.5erfc(ρ=12.041 dB)=0.5erfc(4)=7.7086109.
  • As per right diagram:  0.5erfc(ρ=6 dB)=2.3883103,     0.5erfc(ρ=9.5 dB)=1.2109105,     0.5erfc(ρ=12 dB)=9.006109.


(6)   Find  Q(ρ=0 dB)Q(ρ=5 dB)  and  Q(ρ=10 dB),  and establish the relationship between linear and logarithmic abscissa.

  • The program returns for logarithmic abscissa  Q(ρ=0 dB)=1.5866101Q(ρ=5 dB)=3.7679102Q(ρ=10 dB)=7.827104.
  • The conversion is done according to the equation  x=100.05ρ[dB].  For  ρ=0 dB  we get  x=1   ⇒   Q(ρ=0 dB)=Q(x=1)=1.5866101.
  • For  ρ=5 dB  we get  x=1.1778   ⇒   Q(ρ=5 dB)=Q(x=1.778)=3.7679102.  From the left diagram:  Q(x=1.8)=3.593102.
  • For  ρ=10 dB  we get  x=3.162   ⇒   Q(ρ=10 dB)=Q(x=3.162)=7.827104.  After "quantization":  Q(x=3.15)=8.1635104.



Applet Manual


Qfunction bedienung.png

    (A)     Verwendete Gleichungen am Beispiel  Q(x)

    (B)     Auswahloption für  Q(x)  oder  0.5erfc(x)

    (C)     Schranken  LB  und  UB  werden gezeichnet

    (D)     Auswahl, ob Abszisse linear  (lin)  oder logarithmisch  (log) 

    (E)     Auswahl, ob Ordinate linear  (lin)  oder logarithmisch  (log) 

    (F)     Numerikausgabe am Beispiel  Q(x)  bei linearer Abszisse

    (G)     Slidereingabe des Abszissenwertes  x  für lineare Abszisse

    (H)     Slidereingabe des Abszissenwertes  ρ [dB]  für logarithmische Abszisse

    (I)     Grafikausgabe der Funktion  Q(x)  – hier:  lineare Abszisse

    (J)     Grafikausgabe der Funktion  0.5erfc(x)  – hier:  lineare Abszisse

    (K)     Variationsmöglichkeit für die graphischen Darstellungen

"+" (Vergrößern),

"" (Verkleinern)

"o" (Zurücksetzen)

"" (Verschieben nach links), usw.

About the Authors


This interactive calculation tool was designed and implemented at the  Institute for Communications Engineering  at the  Technical University of Munich.

  • The first version was created in 2007 by  Thomas Großer  as part of his diploma thesis with “FlashMX – Actionscript” (Supervisor: Günter Söder).
  • In 2018 the program was redesigned by  Xiaohan Liu  as part of her bachelor thesis  (Supervisor: Tasnád Kernetzky ) via "HTML5".
  • Last revision and English version 2021 by  Carolin Mirschina  in the context of a working student activity.  Translation using DEEPL.com.


The conversion of this applet to HTML 5 was financially supported by  "Studienzuschüsse"  (Faculty EI of the TU Munich).  We thank.


Once again: Open Applet in new Tab


Open Applet in new Tab   Deutsche Version Öffnen