Difference between revisions of "Aufgaben:Exercise 1.2Z: Measurement of the Frequency Response"
Line 70: | Line 70: | ||
{{ML-Kopf}} | {{ML-Kopf}} | ||
'''(1)''' <u>Approaches 2 und 3</u> are correct.: | '''(1)''' <u>Approaches 2 und 3</u> are correct.: | ||
− | * | + | *For an LTI–system, Y(f)=X(f)·H(f) holds. |
− | * | + | *Therefore, it is not possible for a component with 3f0 to be present in the output signal if such a one is missing in the input signal. |
− | * | + | *This means: There is no LTI–system on hand and accordingly no frequency response can be specified. |
'''(2)''' <u>Approach 3</u> is correct.: | '''(2)''' <u>Approach 3</u> is correct.: | ||
− | *Based on the given numerical values for Ay(f0) filter B can be | + | *Based on the given numerical values for Ay(f0) filter B can be assumed to be a <u>band-pass filter</u>. |
− | '''(3)''' | + | '''(3)''' With Ax=2 V and φx=90∘ (sine function) the following is obtained for f0=f3=3 kHz: |
:$$H_{\rm B} (f_3) = \frac{A_y}{A_x} \cdot {\rm e}^{ -{\rm j} | :$$H_{\rm B} (f_3) = \frac{A_y}{A_x} \cdot {\rm e}^{ -{\rm j} | ||
(\varphi_x - \varphi_y)} = \frac{1\hspace{0.05cm}{\rm | (\varphi_x - \varphi_y)} = \frac{1\hspace{0.05cm}{\rm | ||
V}}{2\hspace{0.05cm}{\rm V}} \cdot {\rm e}^{ -{\rm j} (90^{\circ} - | V}}{2\hspace{0.05cm}{\rm V}} \cdot {\rm e}^{ -{\rm j} (90^{\circ} - | ||
90^{\circ})} = 0.5.$$ | 90^{\circ})} = 0.5.$$ | ||
− | + | Thus, for f0=f3=3 kHz the values | |
− | *aB(f3)≈0.693Np_ | + | *aB(f3)≈0.693Np_ and |
− | *bB(f3)=0(Grad)_. | + | *bB(f3)=0(Grad)_ are obtained. |
− | '''(4)''' | + | '''(4)''' Analogously, the frequency response for f0=f2=2 kHz can be determined: |
:$$H_{\rm B} ( f_2) = \frac{0.8\hspace{0.05cm}{\rm | :$$H_{\rm B} ( f_2) = \frac{0.8\hspace{0.05cm}{\rm | ||
V}}{2\hspace{0.05cm}{\rm V}} \cdot {\rm e}^{ -{\rm j} (90^{\circ} - | V}}{2\hspace{0.05cm}{\rm V}} \cdot {\rm e}^{ -{\rm j} (90^{\circ} - | ||
70^{\circ})} = 0.4\cdot {\rm e}^{ -{\rm j} 20^{\circ}}.$$ | 70^{\circ})} = 0.4\cdot {\rm e}^{ -{\rm j} 20^{\circ}}.$$ | ||
− | + | Hene, for f0=f2=2 kHz: | |
− | *aB(f2)≈0.916Np_ | + | *aB(f2)≈0.916Np_ and |
− | * b_{\rm B}(f_2) \rm \underline{\: = \: 20°}. | + | * b_{\rm B}(f_2) \rm \underline{\: = \: 20°} are obtained. |
− | + | For f_0 = -f_2 =-\hspace{-0.01cm}2 \text{ kHz} the same damping value applies. However, the phase has the opposite sign. So, b_{\rm B}(–f_2) = \ –\hspace{-0.01cm}20^{\circ}. | |
{{ML-Fuß}} | {{ML-Fuß}} |
Revision as of 02:36, 29 June 2021
For the metrological determination of the filter frequency response, a sinusoidal input signal with an amplitude of 2 \hspace{0.05cm} \text{V} and given frequency f_0 is applied. The output signal y(t) or its spectrum Y(f) are then determined according to magnitude and phase.
- The magnitude spectrum at the output of filter \rm A with frequency f_0 = 1 \ \text{kHz} is:
- |Y_{\rm A} (f)| = 1.6\hspace{0.05cm}{\rm V} \cdot {\rm \delta } (f \pm f_0) + 0.4\hspace{0.05cm}{\rm V} \cdot {\rm \delta } (f \pm 3 f_0) .
- For another filter \rm B on the other hand, is always a harmonic oscillation with the (single) frequency f_0. For the frequencies f_0 given in the table the amplitudes A_y(f_0) and the phases φ_y(f_0) are measured. Here, the following holds:
- Y_{\rm B} (f) = {A_y}/{2} \cdot {\rm e}^{ {\rm j} \varphi_y} \cdot {\rm \delta } (f + f_0) + {A_y}/{2} \cdot {\rm e}^{ -{\rm j} \varphi_y} \cdot {\rm \delta } (f - f_0).
In the task, filter \rm B should be given in the form:H_{\rm B}(f) = {\rm e}^{-a_{\rm B}(f)}\cdot {\rm e}^{-{\rm j} \hspace{0.05cm} \cdot \hspace{0.05cm} b_{\rm B}(f)}.
Here,
- a_{\rm B}(f) denotes the damping curve, and
- b_{\rm B}(f) the phase response.
Please note:
- The task belongs to the chapter System Description in Frequency Domain.
Questions
Sample solution
- For an LTI–system, Y(f) = X(f) · H(f) holds.
- Therefore, it is not possible for a component with 3 f_0 to be present in the output signal if such a one is missing in the input signal.
- This means: There is no LTI–system on hand and accordingly no frequency response can be specified.
(2) Approach 3 is correct.:
- Based on the given numerical values for A_y(f_0) filter \rm B can be assumed to be a band-pass filter.
(3) With A_x = 2 \text{ V} and \varphi_x = 90^\circ (sine function) the following is obtained for f_0 = f_3 =3 \text{ kHz}:
- H_{\rm B} (f_3) = \frac{A_y}{A_x} \cdot {\rm e}^{ -{\rm j} (\varphi_x - \varphi_y)} = \frac{1\hspace{0.05cm}{\rm V}}{2\hspace{0.05cm}{\rm V}} \cdot {\rm e}^{ -{\rm j} (90^{\circ} - 90^{\circ})} = 0.5.
Thus, for f_0 = f_3 = 3 \text{ kHz} the values
- a_{\rm B} (f_3)\rm \underline{\: ≈ \: 0.693 \: Np} and
- b_{\rm B}(f_3) \rm \underline{\: = \: 0 \: (Grad)} are obtained.
(4) Analogously, the frequency response for f_0 = f_2 =2 \text{ kHz} can be determined:
- H_{\rm B} ( f_2) = \frac{0.8\hspace{0.05cm}{\rm V}}{2\hspace{0.05cm}{\rm V}} \cdot {\rm e}^{ -{\rm j} (90^{\circ} - 70^{\circ})} = 0.4\cdot {\rm e}^{ -{\rm j} 20^{\circ}}.
Hene, for f_0 = f_2 = 2 \ \text{ kHz}:
- a_{\rm B}(f_2) \rm \underline{\: ≈ \: 0.916 \: Np} and
- b_{\rm B}(f_2) \rm \underline{\: = \: 20°} are obtained.
For f_0 = -f_2 =-\hspace{-0.01cm}2 \text{ kHz} the same damping value applies. However, the phase has the opposite sign. So, b_{\rm B}(–f_2) = \ –\hspace{-0.01cm}20^{\circ}.