Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

Difference between revisions of "Aufgaben:Exercise 2.3Z: Asymmetrical Characteristic Operation"

From LNTwww
Line 2: Line 2:
 
{{quiz-Header|Buchseite=Linear_and_Time_Invariant_Systems/Nonlinear_Distortion}}
 
{{quiz-Header|Buchseite=Linear_and_Time_Invariant_Systems/Nonlinear_Distortion}}
  
[[File:P_ID895__LZI_Z_2_3.png|right|frame|Einfluss nichtlinearer Verzerrungen]]
+
[[File:P_ID895__LZI_Z_2_3.png|right|frame|Influence of nonlinear distortions]]
Am Eingang eines Systems  S  liegt das Cosinussignal
+
The cosine signal
 
:x(t)=Acos(ω0t)
 
:x(t)=Acos(ω0t)
  
an, wobei für die Amplitude stets  A=0.5  gelten soll. Das System  S  besteht
+
is applied to the input of a system  S  where  A=0.5  shall always hold for the amplitude. The system  S  consists of
*aus der Addition eines Gleichanteils  C,  
+
*the addition of a direct (DC) component  C,  
*einer Nichtlinearität mit der Kennlinie
+
*a nonlinearity with the characteristic curve
 
:g(x)=sin(x)xx3/6=g3(x),
 
:g(x)=sin(x)xx3/6=g3(x),
*sowie einem idealen Hochpass, der alle Frequenzen bis auf ein Gleichsignal  (f=0)  unverfälscht passieren lässt.
+
*as well as an ideal high-pass filter that allows all frequencies to pass unaltered except for a direct (DC) signal  (f=0) .
  
  
Das Ausgangssignal des Gesamtsystems kann allgemein wie folgt dargestellt werden:
+
The output signal of the overall system can generally be depicted as follows:
 
:$$y(t) =  A_0 + A_1 \cdot \cos(\omega_0 t) + A_2 \cdot \cos(2\omega_0 t) +
 
:$$y(t) =  A_0 + A_1 \cdot \cos(\omega_0 t) + A_2 \cdot \cos(2\omega_0 t) +
 
  A_3 \cdot \cos(3\omega_0 t) + \hspace{0.05cm}\text{...}$$
 
  A_3 \cdot \cos(3\omega_0 t) + \hspace{0.05cm}\text{...}$$
  
Die sinusförmige Kennlinie  g(x)  soll in der gesamten Aufgabe entsprechend der obigen Gleichung durch die kubische Näherung  g3(x)  approximiert werden.  
+
The sinusoidal characteristic curve  g(x)  is to be approximated by the cubic approximation g3(x)  throughout the whole problem according to the above equation.  
  
Für  C=0  ergäbe sich somit die exakt gleiche Konstellation wie in  [[Aufgaben:2.3_Sinusförmige_Kennlinie|Exercise 2.3]], in deren Unterpunkt  '''(2)'''  der Klirrfaktor berechnet wurde:  
+
This would result in exactly the same constellation as in  [[Aufgaben:2.3_Sinusförmige_Kennlinie|Exercise 2.3]] for  C=0  in whose subtask  '''(2)'''  the distortion factor was calculated:  
 
*K=Kg31.08%  für  A=0.5,
 
*K=Kg31.08%  für  A=0.5,
 
*K=Kg34.76%  für  A=1.0.
 
*K=Kg34.76%  für  A=1.0.
  
  
Unter Berücksichtigung der Konstanten  A=C=0.5  gilt für das Eingangssignal der Nichtlinearität:
+
Considering the constants  A=C=0.5  the following holds for the input signal of the nonlinearity:
 
:xC(t)=C+Acos(ω0t)=1/2+1/2cos(ω0t).
 
:xC(t)=C+Acos(ω0t)=1/2+1/2cos(ω0t).
  
*Die Kennlinie wird also unsymmetrisch betrieben mit Werten zwischen  0  und  1.  
+
*So, the characteristic curve is operated asymmetrically with values between  0  and  1.  
*In obiger Grafik sind zusätzlich die Signale  xC(t)  und  yC(t)  direkt vor und nach der Kennlinie  g(x)  eingezeichnet.
+
*In the above graph, the signals  xC(t)  and  yC(t)  are plotted additionally directly before and after the characteristic curve  g(x) .
  
  
Line 51: Line 51:
  
 
<quiz display=simple>
 
<quiz display=simple>
{Berechnen Sie das Ausgangssignal&nbsp; y(t)&nbsp; unter Berücksichtigung des Hochpasses. Wie lautet der Gleichsignalanteil&nbsp; A0?
+
{Compute the output signal&nbsp; y(t)&nbsp; considering the high-pass filter. What is the direct (DC) signal component&nbsp; A0?
 
|type="{}"}
 
|type="{}"}
 
A0 =  { 0. }
 
A0 =  { 0. }
  
  
{Geben Sie die weiteren Fourierkoeffizienten des Signals&nbsp; y(t)&nbsp; an.
+
{State the other Fourier coefficients of the signal&nbsp; y(t)&nbsp;.
 
|type="{}"}
 
|type="{}"}
 
A1 =   { 0.422 3% }
 
A1 =   { 0.422 3% }
Line 64: Line 64:
  
  
{Berechnen Sie den Klirrfaktor des Gesamtsystems.
+
{Compute the distortion factor of the overall system.
 
|type="{}"}
 
|type="{}"}
 
K =   { 7.51 3% }  %
 
K =   { 7.51 3% }  %
  
  
{Berechnen Sie den Maximal&ndash; und den Minimalwert des Signals&nbsp; y(t).
+
{Compute the maximum and the minimum value of the signal&nbsp; y(t).
 
|type="{}"}
 
|type="{}"}
 
ymax =   { 0.386 3% }
 
ymax =   { 0.386 3% }
Line 80: Line 80:
 
===Solution===
 
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Unter Berücksichtigung der kubischen Näherung &nbsp;g3(x)&nbsp; erhält man vor dem Hochpass:
+
'''(1)'''&nbsp; Considering the cubic approximation&nbsp;g3(x)&nbsp; the following is obtained before the high-pass filter:
 
:$$y_{\rm C}(t) = g_3\big[x_{\rm C}(t)\big] = \big[ C + A \cdot \cos(\omega_0
 
:$$y_{\rm C}(t) = g_3\big[x_{\rm C}(t)\big] = \big[ C + A \cdot \cos(\omega_0
 
  t)\big] - {1}/{6} \cdot \big[ C + A \cdot \cos(\omega_0
 
  t)\big] - {1}/{6} \cdot \big[ C + A \cdot \cos(\omega_0
Line 90: Line 90:
 
  t) + A^3 \cdot \cos^3(\omega_0  t)\big].$$
 
  t) + A^3 \cdot \cos^3(\omega_0  t)\big].$$
  
*Das Signal&nbsp; yC(t)&nbsp; beinhaltet eine Gleichkomponente&nbsp; CC3/6, die aufgrund des Hochpasses im Signal&nbsp; y(t)&nbsp; nicht mehr enthalten ist:  
+
*The signal&nbsp; yC(t)&nbsp; contains a direct (DC) component&nbsp; CC3/6 which is no longer included in the signal&nbsp; y(t)&nbsp; due to the high-pass filter:  
 
:A0=0_.
 
:A0=0_.
  
  
'''(2)'''&nbsp; Bei Anwendung der angegebenen trigonometrischen Beziehungen erhält man folgende Koeffizienten mit&nbsp; A=C=0.5:
+
'''(2)'''&nbsp; Applying the given trigonometric relations the following coefficients with&nbsp; A=C=0.5 are obtained:
 
:$$A_1 = A - {1}/{6}\cdot 3 \cdot C^2 \cdot A  - {1}/{6} \cdot {3}/{4}\cdot
 
:$$A_1 = A - {1}/{6}\cdot 3 \cdot C^2 \cdot A  - {1}/{6} \cdot {3}/{4}\cdot
 
  A^3 = {1}/{2} - {1}/{16} - {1}/{64} = {27}/{64}
 
  A^3 = {1}/{2} - {1}/{16} - {1}/{64} = {27}/{64}
Line 103: Line 103:
 
   A^3 = - {1}/{192}  \hspace{0.15cm}\underline{\approx -0.005}.$$
 
   A^3 = - {1}/{192}  \hspace{0.15cm}\underline{\approx -0.005}.$$
  
*Terme höherer Ordnung kommen nicht vor. Somit ist auch&nbsp; A4=0_.
+
*Higher order terms do not occur. Thus, h&nbsp; A4=0_ holds.
  
  
  
'''(3)'''&nbsp; Die Klirrfaktoren höherer Ordnung ergeben sich bei dieser Aufgabe zu&nbsp; K2=2/277.41%&nbsp; und&nbsp; K3=1/811.23%.  
+
'''(3)'''&nbsp; In this task, the higher order distortion factors are&nbsp; K2=2/277.41%&nbsp; und&nbsp; K3=1/811.23%.  
*Damit erhält man für den Gesamtklirrfaktor
+
*Thereby, the following is obtained for the overall distortion factor:
 
:K=K22+K237.51%_.
 
:K=K22+K237.51%_.
  
  
  
'''(4)'''&nbsp; Der Maximalwert tritt zum Zeitpunkt&nbsp; t=0&nbsp; und bei Vielfachen von&nbsp; T&nbsp; auf:
+
'''(4)'''&nbsp; The maximum value occurs at time&nbsp; t=0&nbsp; and at multiples of&nbsp; T&nbsp;:
 
:$$y_{\rm max}= y(t=0) = A_1 + A_2 + A_3 = 0.422 -0.031 -0.005 \hspace{0.15cm}\underline{=
 
:$$y_{\rm max}= y(t=0) = A_1 + A_2 + A_3 = 0.422 -0.031 -0.005 \hspace{0.15cm}\underline{=
 
  0.386}.$$
 
  0.386}.$$
  
*Die Minimalwerte liegen genau in der Mitte zwischen zwei Maxima und es gilt:
+
*The minimum values are located exactly in the middle between two maxima and it holds that:
 
:$$y_{\rm min}= - A_1 + A_2 - A_3 = -0.422 -0.031 +0.005\hspace{0.15cm}\underline{ =
 
:$$y_{\rm min}= - A_1 + A_2 - A_3 = -0.422 -0.031 +0.005\hspace{0.15cm}\underline{ =
 
  -0.448}.$$
 
  -0.448}.$$
  
*Das Signal&nbsp; y(t)&nbsp; ist gegenüber dem in der Skizze auf der Angabenseite eingezeichnetem Signal&nbsp; um 0.448&nbsp; nach unten verschoben.  
+
*The signal&nbsp; y(t)&nbsp; is shifted downward by 0.448&nbsp; compared to the signal&nbsp; drawn in the sketch on the information page.  
*Dieser Signalwert ergibt sich aus folgender Gleichung mit&nbsp; A=C=1/2:
+
*This signal value is obtained from the following equation considering&nbsp; A=C=1/2:
 
:CCA24C36=1/21/321/48=0.448.
 
:CCA24C36=1/21/321/48=0.448.
 
{{ML-Fuß}}
 
{{ML-Fuß}}

Revision as of 00:24, 15 September 2021

Influence of nonlinear distortions

The cosine signal

x(t)=Acos(ω0t)

is applied to the input of a system  S  where  A=0.5  shall always hold for the amplitude. The system  S  consists of

  • the addition of a direct (DC) component  C,
  • a nonlinearity with the characteristic curve
g(x)=sin(x)xx3/6=g3(x),
  • as well as an ideal high-pass filter that allows all frequencies to pass unaltered except for a direct (DC) signal  (f=0) .


The output signal of the overall system can generally be depicted as follows:

y(t)=A0+A1cos(ω0t)+A2cos(2ω0t)+A3cos(3ω0t)+...

The sinusoidal characteristic curve  g(x)  is to be approximated by the cubic approximation g3(x)  throughout the whole problem according to the above equation.

This would result in exactly the same constellation as in  Exercise 2.3 for  C=0  in whose subtask  (2)  the distortion factor was calculated:

  • K=Kg31.08%  für  A=0.5,
  • K=Kg34.76%  für  A=1.0.


Considering the constants  A=C=0.5  the following holds for the input signal of the nonlinearity:

xC(t)=C+Acos(ω0t)=1/2+1/2cos(ω0t).
  • So, the characteristic curve is operated asymmetrically with values between  0  and  1.
  • In the above graph, the signals  xC(t)  and  yC(t)  are plotted additionally directly before and after the characteristic curve  g(x) .





Please note:

  • The following trigonometric relations are assumed to be known:
cos2(α)=1/2+1/2cos(2α),cos3(α)=3/4cos(α)+1/4cos(3α).


Questions

1

Compute the output signal  y(t)  considering the high-pass filter. What is the direct (DC) signal component  A0?

A0 = 

2

State the other Fourier coefficients of the signal  y(t) .

A1 = 

A2 = 

A3 = 

A4 = 

3

Compute the distortion factor of the overall system.

K = 

 %

4

Compute the maximum and the minimum value of the signal  y(t).

ymax = 

ymin = 


Solution

(1)  Considering the cubic approximation g3(x)  the following is obtained before the high-pass filter:

yC(t)=g3[xC(t)]=[C+Acos(ω0t)]1/6[C+Acos(ω0t)]3
yC(t)=C+Acos(ω0t)1/6[C3+3C2Acos(ω0t)+3CA2cos2(ω0t)+A3cos3(ω0t)].
  • The signal  yC(t)  contains a direct (DC) component  CC3/6 which is no longer included in the signal  y(t)  due to the high-pass filter:
A0=0_.


(2)  Applying the given trigonometric relations the following coefficients with  A=C=0.5 are obtained:

A1=A1/63C2A1/63/4A3=1/21/161/64=27/640.422_,
A2=1/631/2CA2=1320.031_,
A3=1/614A3=1/1920.005_.
  • Higher order terms do not occur. Thus, h  A4=0_ holds.


(3)  In this task, the higher order distortion factors are  K2=2/277.41%  und  K3=1/811.23%.

  • Thereby, the following is obtained for the overall distortion factor:
K=K22+K237.51%_.


(4)  The maximum value occurs at time  t=0  and at multiples of  T :

ymax=y(t=0)=A1+A2+A3=0.4220.0310.005=0.386_.
  • The minimum values are located exactly in the middle between two maxima and it holds that:
ymin=A1+A2A3=0.4220.031+0.005=0.448_.
  • The signal  y(t)  is shifted downward by 0.448  compared to the signal  drawn in the sketch on the information page.
  • This signal value is obtained from the following equation considering  A=C=1/2:
CCA24C36=1/21/321/48=0.448.