Difference between revisions of "Aufgaben:Exercise 4.1Z: Calculation of Moments"
Line 3: | Line 3: | ||
}} | }} | ||
− | [[File:EN_Inf_Z_4_1_vers2.png|right|frame| | + | [[File:EN_Inf_Z_4_1_vers2.png|right|frame|Exponential distribution (top) and Laplace distribution (bottom)]] |
− | + | The graph above shows the probability density function (PDF) of the [[Theory_of_Stochastic_Signals/Exponentialverteilte_Zufallsgrößen|exponential distribution]]: | |
:$$f_X(x) = \left\{ \begin{array}{c} A_{ X} \cdot {\rm e}^{-\lambda \hspace{0.05cm} \cdot \hspace{0.05cm}x} \\ A_{ X}/2 \\ 0 \\ \end{array} \right. \begin{array}{*{20}c} {\rm{f\ddot{u}r}} \hspace{0.1cm}x>0, \\ {\rm{f\ddot{u}r}} \hspace{0.1cm}x=0, \\ {\rm{f\ddot{u}r}} \hspace{0.1cm}x<0. \\ \end{array}$$ | :$$f_X(x) = \left\{ \begin{array}{c} A_{ X} \cdot {\rm e}^{-\lambda \hspace{0.05cm} \cdot \hspace{0.05cm}x} \\ A_{ X}/2 \\ 0 \\ \end{array} \right. \begin{array}{*{20}c} {\rm{f\ddot{u}r}} \hspace{0.1cm}x>0, \\ {\rm{f\ddot{u}r}} \hspace{0.1cm}x=0, \\ {\rm{f\ddot{u}r}} \hspace{0.1cm}x<0. \\ \end{array}$$ | ||
− | + | Drawn below is the WDF of the [[Theory_of_Stochastic_Signals/Exponentialverteilte_Zufallsgrößen#Zweiseitige_Exponentialverteilung_.E2.80.93_Laplaceverteilung|Laplace distribution]], which can be specified for all $y$–values as follows: | |
:$$f_Y(y) = A_{ Y} \cdot {\rm e}^{-\lambda \hspace{0.05cm} \cdot \hspace{0.05cm} |\hspace{0.03cm}y\hspace{0.03cm}|}\hspace{0.05cm}.$$ | :$$f_Y(y) = A_{ Y} \cdot {\rm e}^{-\lambda \hspace{0.05cm} \cdot \hspace{0.05cm} |\hspace{0.03cm}y\hspace{0.03cm}|}\hspace{0.05cm}.$$ | ||
− | + | The two continuous value random variables $X$ and $Y$ are to be compared with respect to the following characteristics: | |
− | * | + | *the linear mean $m_1$ (first order moment), |
− | * | + | *the second order moment ⇒ $m_2$, |
− | * | + | *the variance $\sigma^2 = m_2 - m_1^2$ ⇒ Steiner's theorem, |
− | * | + | *the dispersion $\sigma$. |
Line 22: | Line 22: | ||
− | + | Hint: | |
− | * | + | *The task belongs to the chapter [[Information_Theory/Differentielle_Entropie|Differential Entropy]]. |
− | * | + | *Useful hints for solving this task and further information on continuous-valued random variables can be found in the third chapter "Continuous Random Variables" of the book [[Theory of Stochastic Signals]]. |
− | * | + | *Also given are the two indefinite integrals: |
:$$\int \hspace{-0.01cm} x \cdot {\rm e}^{-\lambda \hspace{0.05cm}\cdot \hspace{0.05cm}x}\hspace{0.1cm}{\rm d}x = \frac{{\rm e}^{-\lambda \hspace{0.05cm}\cdot \hspace{0.05cm}x}}{(-\lambda)^2}\cdot(-\lambda \cdot x-1)\hspace{0.05cm}, $$ | :$$\int \hspace{-0.01cm} x \cdot {\rm e}^{-\lambda \hspace{0.05cm}\cdot \hspace{0.05cm}x}\hspace{0.1cm}{\rm d}x = \frac{{\rm e}^{-\lambda \hspace{0.05cm}\cdot \hspace{0.05cm}x}}{(-\lambda)^2}\cdot(-\lambda \cdot x-1)\hspace{0.05cm}, $$ | ||
:$$\int \hspace{-0.01cm} x^2 \cdot {\rm e}^{-\lambda \hspace{0.05cm}\cdot \hspace{0.05cm}x}\hspace{0.1cm}{\rm d}x = {\rm e}^{-\lambda \hspace{0.05cm}\cdot \hspace{0.05cm}x}\cdot | :$$\int \hspace{-0.01cm} x^2 \cdot {\rm e}^{-\lambda \hspace{0.05cm}\cdot \hspace{0.05cm}x}\hspace{0.1cm}{\rm d}x = {\rm e}^{-\lambda \hspace{0.05cm}\cdot \hspace{0.05cm}x}\cdot | ||
Line 33: | Line 33: | ||
− | === | + | ===Questions=== |
<quiz display=simple> | <quiz display=simple> | ||
− | { | + | {What is the maximum value $A_X$ of the PDF $f_X(x)$? |
|type="()"} | |type="()"} | ||
- $A_X = \lambda/2$, | - $A_X = \lambda/2$, | ||
Line 42: | Line 42: | ||
- $A_X = 1/\lambda$. | - $A_X = 1/\lambda$. | ||
− | { | + | {What is the maximum value $A_Y$ of the PDF $f_Y(y)$? |
|type="()"} | |type="()"} | ||
+ $A_Y = \lambda/2$, | + $A_Y = \lambda/2$, | ||
Line 49: | Line 49: | ||
− | { | + | {Is there an argument $z$, such that $f_X(z) = f_Y(z)$ ? |
|type="()"} | |type="()"} | ||
− | + | + | + Yes. |
− | - | + | - No. |
− | { | + | {Which statements are true about the characteristics of the exponential distribution? |
|type="[]"} | |type="[]"} | ||
− | + | + | + The linear mean is $m_1 = 1/\lambda$. |
− | + | + | + The root mean square is $m_2 = 2/\lambda^2$. |
− | + | + | + The variance is $\sigma^2 = 1/\lambda^2$. |
− | { | + | {Which statements are true about the characteristics of the Laplace distribution? |
|type="[]"} | |type="[]"} | ||
− | - | + | - The linear mean is $m_1 = 1/\lambda$. |
− | + | + | + The root mean square is $m_2 = 2/\lambda^2$. |
− | - | + | - The variance is $\sigma^2 = 1/\lambda^2$. |
− | { | + | {With what probabilities does the random variable $(X$ or $Y)$ differ from the respective mean in amount by more than the dispersion $\sigma$? |
|type="{}"} | |type="{}"} | ||
$\text{Exponential:}\; \;{\rm Pr}( |X - m_X| > \sigma_X) \ = \ $ { 0.135 3% } | $\text{Exponential:}\; \;{\rm Pr}( |X - m_X| > \sigma_X) \ = \ $ { 0.135 3% } | ||
Line 75: | Line 75: | ||
</quiz> | </quiz> | ||
− | === | + | ===Solution=== |
{{ML-Kopf}} | {{ML-Kopf}} | ||
− | '''(1)''' | + | '''(1)''' <u>Proposed solution 2</u> is correct: |
− | * | + | *The area under the PDF must always be $1$ . It follows for the exponential distribution: |
:$$A_{X} \cdot\int_{0}^{\infty} \hspace{-0.01cm} {\rm e}^{-\lambda \hspace{0.05cm}\cdot \hspace{0.05cm}x}\hspace{0.1cm}{\rm d}x = A_{X} \cdot (-1/\lambda)\cdot\big [{\rm e}^{-\lambda \hspace{0.05cm}\cdot \hspace{0.05cm}x}\big ]_{0}^{\infty} = A_{X} \cdot (1/\lambda) \stackrel{!}{=} 1 | :$$A_{X} \cdot\int_{0}^{\infty} \hspace{-0.01cm} {\rm e}^{-\lambda \hspace{0.05cm}\cdot \hspace{0.05cm}x}\hspace{0.1cm}{\rm d}x = A_{X} \cdot (-1/\lambda)\cdot\big [{\rm e}^{-\lambda \hspace{0.05cm}\cdot \hspace{0.05cm}x}\big ]_{0}^{\infty} = A_{X} \cdot (1/\lambda) \stackrel{!}{=} 1 | ||
\hspace{0.3cm} \Rightarrow\hspace{0.3cm} A_{X} = \lambda \hspace{0.05cm}. $$ | \hspace{0.3cm} \Rightarrow\hspace{0.3cm} A_{X} = \lambda \hspace{0.05cm}. $$ | ||
Line 84: | Line 84: | ||
− | '''(2)''' | + | '''(2)''' <u>Proposed solution 1</u> is correct: |
− | * | + | *From the graph on the information page, we can see that the heighz $A_Y$ of the Laplace distribution is only half as large as the maximum of the exponential distribution: |
:$$A_Y = \lambda/2.$$ | :$$A_Y = \lambda/2.$$ | ||
− | '''(3)''' | + | '''(3)''' Correct is <u>YES</u>, although for $z \ne 0$ always $f_X(z) = f_Y(z)$ . Let us now consider the special case $z= 0$: |
− | * | + | * For the Laplace distribution, $f_Y(y = 0) = \lambda/2$. |
− | * | + | * For the exponential distribution, the left-hand and right-hand limits differ for $x \to 0$. |
− | * | + | *The PDF–value at the point $x= 0$ is the average of these two limits: |
:$$f_X(0) = \frac{1}{2} \cdot \big [ 0 + \lambda \big] = \lambda/2 = f_Y(0)\hspace{0.05cm}.$$ | :$$f_X(0) = \frac{1}{2} \cdot \big [ 0 + \lambda \big] = \lambda/2 = f_Y(0)\hspace{0.05cm}.$$ | ||
− | '''(4)''' | + | '''(4)''' <u>All proposed solutions</u> are correct. |
− | + | For the exponential distribution, the $k$th order moment is generally calculated to be | |
:$$m_k = \frac{k!}{\lambda^k} \hspace{0.3cm}\Rightarrow\hspace{0.3cm} m_1 = \frac{1}{\lambda}, \hspace{0.3cm} m_2 = \frac{2}{\lambda^2}, \hspace{0.3cm} m_3 = \frac{6}{\lambda^3}, \ \text{...}$$ | :$$m_k = \frac{k!}{\lambda^k} \hspace{0.3cm}\Rightarrow\hspace{0.3cm} m_1 = \frac{1}{\lambda}, \hspace{0.3cm} m_2 = \frac{2}{\lambda^2}, \hspace{0.3cm} m_3 = \frac{6}{\lambda^3}, \ \text{...}$$ | ||
− | + | Thus one obtains for | |
− | * | + | * the linear mean (first order moment): |
:$$m_1 = \lambda \cdot\int_{0}^{\infty} \hspace{-0.01cm} x \cdot {\rm e}^{-\lambda \hspace{0.05cm}\cdot \hspace{0.05cm}x}\hspace{0.1cm}{\rm d}x = \lambda \cdot \left [\frac{{\rm e}^{-\lambda \hspace{0.05cm}\cdot \hspace{0.05cm}x}}{(-\lambda)^2}\cdot(-\lambda \cdot x-1)\right ]_{0}^{\infty}= {1}/{\lambda} \hspace{0.05cm},$$ | :$$m_1 = \lambda \cdot\int_{0}^{\infty} \hspace{-0.01cm} x \cdot {\rm e}^{-\lambda \hspace{0.05cm}\cdot \hspace{0.05cm}x}\hspace{0.1cm}{\rm d}x = \lambda \cdot \left [\frac{{\rm e}^{-\lambda \hspace{0.05cm}\cdot \hspace{0.05cm}x}}{(-\lambda)^2}\cdot(-\lambda \cdot x-1)\right ]_{0}^{\infty}= {1}/{\lambda} \hspace{0.05cm},$$ | ||
− | * | + | * the root mean square (second order moment): |
:$$m_2 = \lambda \cdot\int_{0}^{\infty} \hspace{-0.01cm} x^2 \cdot {\rm e}^{-\lambda \hspace{0.05cm}\cdot \hspace{0.05cm}x}\hspace{0.1cm}{\rm d}x = \lambda \cdot\left [ {\rm e}^{-\lambda \hspace{0.05cm}\cdot \hspace{0.05cm}x}\cdot | :$$m_2 = \lambda \cdot\int_{0}^{\infty} \hspace{-0.01cm} x^2 \cdot {\rm e}^{-\lambda \hspace{0.05cm}\cdot \hspace{0.05cm}x}\hspace{0.1cm}{\rm d}x = \lambda \cdot\left [ {\rm e}^{-\lambda \hspace{0.05cm}\cdot \hspace{0.05cm}x}\cdot | ||
(\frac{x^2}{-\lambda} - \frac{2x}{\lambda^2} + \frac{2}{\lambda^3}) | (\frac{x^2}{-\lambda} - \frac{2x}{\lambda^2} + \frac{2}{\lambda^3}) | ||
\right ]_{0}^{\infty} ={2}/{\lambda^2} \hspace{0.05cm}.$$ | \right ]_{0}^{\infty} ={2}/{\lambda^2} \hspace{0.05cm}.$$ | ||
− | + | From this, using Steiner's theorem for the variance of the exponential distribution, we get: | |
:$$\sigma^2 = m_2 - m_1^2 = {2}/{\lambda^2} -{1}/{\lambda^2} = {1}/{\lambda^2} | :$$\sigma^2 = m_2 - m_1^2 = {2}/{\lambda^2} -{1}/{\lambda^2} = {1}/{\lambda^2} | ||
\hspace{0.3cm} \Rightarrow\hspace{0.3cm} | \hspace{0.3cm} \Rightarrow\hspace{0.3cm} | ||
Line 116: | Line 116: | ||
− | '''(5)''' | + | '''(5)''' Only the <u>proposed solution 2</u> is correct: |
− | * | + | *The quadratic mean of the Laplace distribution is exactly the same as for the exponential distribution because of the symmetric PDF: |
− | [[File:EN_Inf_A_4_3.png|right|frame| | + | [[File:EN_Inf_A_4_3.png|right|frame|To illustrate the sample solution to problem '''(5)''']] |
:$$m_2 = \frac{\lambda}{2} \cdot \int_{-\infty}^{\infty} \hspace{-0.01cm} y^2 \cdot {\rm e}^{-\lambda \hspace{0.05cm}\cdot \hspace{0.05cm}|y|}\hspace{0.1cm}{\rm d}y = \lambda \cdot\int_{0}^{\infty} \hspace{-0.01cm} y^2 \cdot {\rm e}^{-\lambda \hspace{0.05cm}\cdot \hspace{0.05cm}y}\hspace{0.1cm}{\rm d}y = {2}/{\lambda^2} \hspace{0.05cm}.$$ | :$$m_2 = \frac{\lambda}{2} \cdot \int_{-\infty}^{\infty} \hspace{-0.01cm} y^2 \cdot {\rm e}^{-\lambda \hspace{0.05cm}\cdot \hspace{0.05cm}|y|}\hspace{0.1cm}{\rm d}y = \lambda \cdot\int_{0}^{\infty} \hspace{-0.01cm} y^2 \cdot {\rm e}^{-\lambda \hspace{0.05cm}\cdot \hspace{0.05cm}y}\hspace{0.1cm}{\rm d}y = {2}/{\lambda^2} \hspace{0.05cm}.$$ | ||
− | * | + | *In contrast, the mean of the Laplace distribution is $m_1 = 0$. |
− | * | + | *Thus, the variance of the Laplace distribution is twice that of the exponential distribution: |
:$$\sigma^2 = m_2 - m_1^2 = {2}/{\lambda^2} - 0 ={2}/{\lambda^2} | :$$\sigma^2 = m_2 - m_1^2 = {2}/{\lambda^2} - 0 ={2}/{\lambda^2} | ||
\hspace{0.3cm} \Rightarrow\hspace{0.3cm} | \hspace{0.3cm} \Rightarrow\hspace{0.3cm} | ||
Line 130: | Line 130: | ||
− | '''(6)''' | + | '''(6)''' For the exponential distribution, according to the upper graph with $m_X = \sigma_X = 1/\lambda$: |
:$${\rm Pr}( |X - m_X| > \sigma_X) \hspace{-0.05cm} = \hspace{-0.05cm} | :$${\rm Pr}( |X - m_X| > \sigma_X) \hspace{-0.05cm} = \hspace{-0.05cm} | ||
{\rm Pr}( X > 2/\lambda) | {\rm Pr}( X > 2/\lambda) | ||
Line 137: | Line 137: | ||
\right ]_{2/\lambda}^{\infty} | \right ]_{2/\lambda}^{\infty} | ||
= {\rm e}^{-2} \hspace{0.15cm}\underline {\approx 0.135}.$$ | = {\rm e}^{-2} \hspace{0.15cm}\underline {\approx 0.135}.$$ | ||
− | + | For the Laplace distribution (lower graph), with $m_Y = 0$ and $\sigma_Y = \sqrt{2}/\lambda$ we obtain:: | |
:$${\rm Pr}( |Y - m_Y| > \sigma_Y) = | :$${\rm Pr}( |Y - m_Y| > \sigma_Y) = | ||
2 \cdot {\rm Pr}( Y > \sqrt{2}/\lambda) | 2 \cdot {\rm Pr}( Y > \sqrt{2}/\lambda) | ||
Line 146: | Line 146: | ||
= - {\rm e}^{-\sqrt{2}} \hspace{0.15cm}\underline {\approx 0.243}\hspace{0.05cm}.$$ | = - {\rm e}^{-\sqrt{2}} \hspace{0.15cm}\underline {\approx 0.243}\hspace{0.05cm}.$$ | ||
− | + | A comparison of the shaded areas in the accompanying graph qualitatively confirms the result: <br> The blue areas together are slightly larger than the red area. | |
Revision as of 08:40, 24 September 2021
The graph above shows the probability density function (PDF) of the exponential distribution:
- $$f_X(x) = \left\{ \begin{array}{c} A_{ X} \cdot {\rm e}^{-\lambda \hspace{0.05cm} \cdot \hspace{0.05cm}x} \\ A_{ X}/2 \\ 0 \\ \end{array} \right. \begin{array}{*{20}c} {\rm{f\ddot{u}r}} \hspace{0.1cm}x>0, \\ {\rm{f\ddot{u}r}} \hspace{0.1cm}x=0, \\ {\rm{f\ddot{u}r}} \hspace{0.1cm}x<0. \\ \end{array}$$
Drawn below is the WDF of the Laplace distribution, which can be specified for all $y$–values as follows:
- $$f_Y(y) = A_{ Y} \cdot {\rm e}^{-\lambda \hspace{0.05cm} \cdot \hspace{0.05cm} |\hspace{0.03cm}y\hspace{0.03cm}|}\hspace{0.05cm}.$$
The two continuous value random variables $X$ and $Y$ are to be compared with respect to the following characteristics:
- the linear mean $m_1$ (first order moment),
- the second order moment ⇒ $m_2$,
- the variance $\sigma^2 = m_2 - m_1^2$ ⇒ Steiner's theorem,
- the dispersion $\sigma$.
Hint:
- The task belongs to the chapter Differential Entropy.
- Useful hints for solving this task and further information on continuous-valued random variables can be found in the third chapter "Continuous Random Variables" of the book Theory of Stochastic Signals.
- Also given are the two indefinite integrals:
- $$\int \hspace{-0.01cm} x \cdot {\rm e}^{-\lambda \hspace{0.05cm}\cdot \hspace{0.05cm}x}\hspace{0.1cm}{\rm d}x = \frac{{\rm e}^{-\lambda \hspace{0.05cm}\cdot \hspace{0.05cm}x}}{(-\lambda)^2}\cdot(-\lambda \cdot x-1)\hspace{0.05cm}, $$
- $$\int \hspace{-0.01cm} x^2 \cdot {\rm e}^{-\lambda \hspace{0.05cm}\cdot \hspace{0.05cm}x}\hspace{0.1cm}{\rm d}x = {\rm e}^{-\lambda \hspace{0.05cm}\cdot \hspace{0.05cm}x}\cdot (\frac{x^2}{-\lambda} - \frac{2x}{\lambda^2} + \frac{2}{\lambda^3}) \hspace{0.05cm}. $$
Questions
Solution
- The area under the PDF must always be $1$ . It follows for the exponential distribution:
- $$A_{X} \cdot\int_{0}^{\infty} \hspace{-0.01cm} {\rm e}^{-\lambda \hspace{0.05cm}\cdot \hspace{0.05cm}x}\hspace{0.1cm}{\rm d}x = A_{X} \cdot (-1/\lambda)\cdot\big [{\rm e}^{-\lambda \hspace{0.05cm}\cdot \hspace{0.05cm}x}\big ]_{0}^{\infty} = A_{X} \cdot (1/\lambda) \stackrel{!}{=} 1 \hspace{0.3cm} \Rightarrow\hspace{0.3cm} A_{X} = \lambda \hspace{0.05cm}. $$
(2) Proposed solution 1 is correct:
- From the graph on the information page, we can see that the heighz $A_Y$ of the Laplace distribution is only half as large as the maximum of the exponential distribution:
- $$A_Y = \lambda/2.$$
(3) Correct is YES, although for $z \ne 0$ always $f_X(z) = f_Y(z)$ . Let us now consider the special case $z= 0$:
- For the Laplace distribution, $f_Y(y = 0) = \lambda/2$.
- For the exponential distribution, the left-hand and right-hand limits differ for $x \to 0$.
- The PDF–value at the point $x= 0$ is the average of these two limits:
- $$f_X(0) = \frac{1}{2} \cdot \big [ 0 + \lambda \big] = \lambda/2 = f_Y(0)\hspace{0.05cm}.$$
(4) All proposed solutions are correct.
For the exponential distribution, the $k$th order moment is generally calculated to be
- $$m_k = \frac{k!}{\lambda^k} \hspace{0.3cm}\Rightarrow\hspace{0.3cm} m_1 = \frac{1}{\lambda}, \hspace{0.3cm} m_2 = \frac{2}{\lambda^2}, \hspace{0.3cm} m_3 = \frac{6}{\lambda^3}, \ \text{...}$$
Thus one obtains for
- the linear mean (first order moment):
- $$m_1 = \lambda \cdot\int_{0}^{\infty} \hspace{-0.01cm} x \cdot {\rm e}^{-\lambda \hspace{0.05cm}\cdot \hspace{0.05cm}x}\hspace{0.1cm}{\rm d}x = \lambda \cdot \left [\frac{{\rm e}^{-\lambda \hspace{0.05cm}\cdot \hspace{0.05cm}x}}{(-\lambda)^2}\cdot(-\lambda \cdot x-1)\right ]_{0}^{\infty}= {1}/{\lambda} \hspace{0.05cm},$$
- the root mean square (second order moment):
- $$m_2 = \lambda \cdot\int_{0}^{\infty} \hspace{-0.01cm} x^2 \cdot {\rm e}^{-\lambda \hspace{0.05cm}\cdot \hspace{0.05cm}x}\hspace{0.1cm}{\rm d}x = \lambda \cdot\left [ {\rm e}^{-\lambda \hspace{0.05cm}\cdot \hspace{0.05cm}x}\cdot (\frac{x^2}{-\lambda} - \frac{2x}{\lambda^2} + \frac{2}{\lambda^3}) \right ]_{0}^{\infty} ={2}/{\lambda^2} \hspace{0.05cm}.$$
From this, using Steiner's theorem for the variance of the exponential distribution, we get:
- $$\sigma^2 = m_2 - m_1^2 = {2}/{\lambda^2} -{1}/{\lambda^2} = {1}/{\lambda^2} \hspace{0.3cm} \Rightarrow\hspace{0.3cm} \sigma = {1}/{\lambda}\hspace{0.05cm}.$$
(5) Only the proposed solution 2 is correct:
- The quadratic mean of the Laplace distribution is exactly the same as for the exponential distribution because of the symmetric PDF:
- $$m_2 = \frac{\lambda}{2} \cdot \int_{-\infty}^{\infty} \hspace{-0.01cm} y^2 \cdot {\rm e}^{-\lambda \hspace{0.05cm}\cdot \hspace{0.05cm}|y|}\hspace{0.1cm}{\rm d}y = \lambda \cdot\int_{0}^{\infty} \hspace{-0.01cm} y^2 \cdot {\rm e}^{-\lambda \hspace{0.05cm}\cdot \hspace{0.05cm}y}\hspace{0.1cm}{\rm d}y = {2}/{\lambda^2} \hspace{0.05cm}.$$
- In contrast, the mean of the Laplace distribution is $m_1 = 0$.
- Thus, the variance of the Laplace distribution is twice that of the exponential distribution:
- $$\sigma^2 = m_2 - m_1^2 = {2}/{\lambda^2} - 0 ={2}/{\lambda^2} \hspace{0.3cm} \Rightarrow\hspace{0.3cm} \sigma = {\sqrt{2}}/{\lambda}\hspace{0.05cm}.$$
(6) For the exponential distribution, according to the upper graph with $m_X = \sigma_X = 1/\lambda$:
- $${\rm Pr}( |X - m_X| > \sigma_X) \hspace{-0.05cm} = \hspace{-0.05cm} {\rm Pr}( X > 2/\lambda) \hspace{-0.05cm} = \hspace{-0.05cm} \lambda \cdot\int_{2/\lambda}^{\infty} \hspace{-0.08cm} {\rm e}^{-\lambda \hspace{0.05cm}\cdot \hspace{0.05cm}x}\hspace{0.1cm}{\rm d}x = -\left [ {\rm e}^{-\lambda \hspace{0.05cm}\cdot \hspace{0.05cm}x} \right ]_{2/\lambda}^{\infty} = {\rm e}^{-2} \hspace{0.15cm}\underline {\approx 0.135}.$$
For the Laplace distribution (lower graph), with $m_Y = 0$ and $\sigma_Y = \sqrt{2}/\lambda$ we obtain::
- $${\rm Pr}( |Y - m_Y| > \sigma_Y) = 2 \cdot {\rm Pr}( Y > \sqrt{2}/\lambda) = 2 \cdot \frac{\lambda}{2} \cdot\int_{\sqrt{2}/\lambda}^{\infty} \hspace{-0.01cm} {\rm e}^{-\lambda \hspace{0.05cm}\cdot \hspace{0.05cm}x}\hspace{0.1cm}{\rm d}x $$
- $$\Rightarrow \hspace{0.3cm}{\rm Pr}( |Y - m_Y| > \sigma_Y) = \left [ {\rm e}^{-\lambda \hspace{0.05cm}\cdot \hspace{0.05cm}x} \right ]_{\sqrt{2}/\lambda}^{\infty} = - {\rm e}^{-\sqrt{2}} \hspace{0.15cm}\underline {\approx 0.243}\hspace{0.05cm}.$$
A comparison of the shaded areas in the accompanying graph qualitatively confirms the result:
The blue areas together are slightly larger than the red area.