Difference between revisions of "Aufgaben:Exercise 3.6Z: Two Imaginary Poles"
From LNTwww
Line 97: | Line 97: | ||
− | '''(2)''' | + | '''(2)''' The <u>suggested solutions 2 and 4</u> are correct: |
− | * | + | *In principle, this subtask could be solved in the same way as subtask '''(1)'''. |
− | * | + | *However, the integration theorem can also be used. |
− | * | + | *This says among other things that multiplication by 1/p in the spectral domain corresponds to integration in the time domain: |
:$$Y_{\rm L}(p) = {1}/{p} \cdot X_{\rm L}(p) \hspace{0.3cm} \Rightarrow \hspace{0.3cm} t \ge 0:\quad y(t) = \int_{-\infty}^t \cos(2\pi | :$$Y_{\rm L}(p) = {1}/{p} \cdot X_{\rm L}(p) \hspace{0.3cm} \Rightarrow \hspace{0.3cm} t \ge 0:\quad y(t) = \int_{-\infty}^t \cos(2\pi | ||
\tau)\,\,{\rm d}\tau = {1}/({2\pi}) \cdot \sin(2\pi t) | \tau)\,\,{\rm d}\tau = {1}/({2\pi}) \cdot \sin(2\pi t) | ||
\hspace{0.05cm} .$$ | \hspace{0.05cm} .$$ | ||
− | '' | + | ''Please note'': The causal cosine signal x(t) and the causal sine signal y(t) sind auf dem Angabenblatt zu [[Aufgaben:3.6_Einschwingverhalten|Exercise 3.6]] als cK(t) bzw. sK(t) dargestellt. |
Revision as of 10:02, 25 October 2021
In this exercise, we consider a causal signal x(t) with the Laplace transform
- XL(p)=pp2+4π2=p(p−j⋅2π)(p+j⋅2π)
corresponding to the graph (one red zero and two green poles).
In contrast, the signal y(t) has the Laplace spectral function
- YL(p)=1p2+4π2.
Thus, the red zero does not belong to YL(p).
Finally, the signal z(t) with the Laplace tansform
- ZL(p)=p(p−j⋅β)(p+j⋅β)
is considered, in particular the limiting case for β→0.
Please note:
- The exercise belongs to the chapter Inverse Laplace Transform.
- The frequency variable p is normalized such that time t is in microseconds after applying the residue theorem.
- A result t=1 is thus to be interpreted as t=T with T=1 µs .
- The residue theorem is as follows using the example of the function XL(p) with two simple poles at ±j⋅β:
- x(t)=XL(p)⋅(p−j⋅β)⋅ep⋅t|p=j⋅β+XL(p)⋅(p+j⋅β)⋅ep⋅t|p=−j⋅β.
Questions
Solution
(1) The suggested solutions 1, 3 and 4 are correct:
- The following is obtained for signal x(t) for positive times by applying the residue theorem:
- x1(t)=Res|p=px1{XL(p)⋅ep⋅t}=pp+j⋅2π⋅ep⋅t|p=j⋅2π=12⋅ej⋅2πt,
- x2(t)=Res|p=px2{XL(p)⋅ep⋅t}=pp−j⋅2π⋅ep⋅t|p=−j⋅2π=12⋅e−j⋅2πt.
- ⇒x(t)=x1(t)+x2(t)=1/2⋅[ej⋅2πt+e−j⋅2πt]=cos(2πt).
(2) The suggested solutions 2 and 4 are correct:
- In principle, this subtask could be solved in the same way as subtask (1).
- However, the integration theorem can also be used.
- This says among other things that multiplication by 1/p in the spectral domain corresponds to integration in the time domain:
- YL(p)=1/p⋅XL(p)⇒t≥0:y(t)=∫t−∞cos(2πτ)dτ=1/(2π)⋅sin(2πt).
Please note: The causal cosine signal x(t) and the causal sine signal y(t) sind auf dem Angabenblatt zu Exercise 3.6 als cK(t) bzw. sK(t) dargestellt.
(3) Richtig sind die Lösungsvorschläge 1 und 3:
- Ein Vergleich mit der Berechnung von x(t) zeigt, dass z(t)=cos(β⋅t) für t≥0 und z(t)=0 für t<0 gilt.
- Der Grenzübergang für β→0 führt damit zur Sprungfunktion γ(t).
- Zum gleichen Ergebnis kommt man durch die Betrachtung im Spektralbereich:
- ZL(p)=limβ→0pp2+β2=1/p⇒z(t)=γ(t).