Difference between revisions of "Aufgaben:Exercise 4.5: Coaxial Cable - Impulse Response"

From LNTwww
Line 3: Line 3:
  
 
[[File:P_ID1814__LZI_A_4_5.png|right|frame|Impulse response of a coaxial cable]]
 
[[File:P_ID1814__LZI_A_4_5.png|right|frame|Impulse response of a coaxial cable]]
The frequency response of a coaxial cable of length  $l$  can be represented by the following formula:
+
The frequency response of a coaxial cable  (German:  "Koaxialkabel"   ⇒   subscipt  "K")  of length  $l$  can be represented by the following formula:
 
:$$H_{\rm K}(f)  = {\rm e}^{- \alpha_0 \hspace{0.05cm} \cdot \hspace{0.05cm} l}
 
:$$H_{\rm K}(f)  = {\rm e}^{- \alpha_0 \hspace{0.05cm} \cdot \hspace{0.05cm} l}
 
   \cdot   
 
   \cdot   
Line 9: Line 9:
 
   {\rm e}^{- (\alpha_2 + {\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} \beta_2) \hspace{0.05cm}\cdot \sqrt{f} \hspace{0.05cm}\cdot \hspace{0.05cm}l}
 
   {\rm e}^{- (\alpha_2 + {\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} \beta_2) \hspace{0.05cm}\cdot \sqrt{f} \hspace{0.05cm}\cdot \hspace{0.05cm}l}
 
     \hspace{0.05cm}.$$
 
     \hspace{0.05cm}.$$
The first term of this equation is due to the ohmic losses, the second term to the transverse losses. Dominant, however, is the skin effect, which is expressed by the third term.
+
The first term of this equation is due to the ohmic losses,  the second term to the transverse losses.  Dominant,  however,  is the skin effect,  which is expressed by the third term.
  
With the coefficients valid for a "standard coaxial cable"  $\text{(2.6 mm}$  core diameter,  $\text{9.5 mm}$  outer diameter$)$   
+
With the coefficients valid for the  "standard coaxial cable"  $\text{(2.6 mm}$  core diameter,  $\text{9.5 mm}$  outer diameter$)$   
 
:$$\alpha_2 = 0.2722 \hspace{0.15cm}\frac {\rm Np}{\rm km \cdot \sqrt{\rm MHz}}
 
:$$\alpha_2 = 0.2722 \hspace{0.15cm}\frac {\rm Np}{\rm km \cdot \sqrt{\rm MHz}}
 
   \hspace{0.05cm},
 
   \hspace{0.05cm},
Line 22: Line 22:
 
   \hspace{0.05cm}\cdot \sqrt{f/{\rm MHz}}}
 
   \hspace{0.05cm}\cdot \sqrt{f/{\rm MHz}}}
 
     \hspace{0.05cm}.$$
 
     \hspace{0.05cm}.$$
⇒   Attenuation curve  ${a}_{\rm K}(f)$  and phase curve  $b_{\rm K}(f)$  are identical except for the pseudo units "Np" and "rad", respectively.
+
That means:  
 +
 
 +
Attenuation curve  ${a}_{\rm K}(f)$  and phase curve  $b_{\rm K}(f)$  are identical except for the pseudo units  "Np"  and  "rad",  respectively.
  
  
Line 28: Line 30:
 
:$${a}_{\rm \star} = {a}_{\rm K}(f ={R}/{2})
 
:$${a}_{\rm \star} = {a}_{\rm K}(f ={R}/{2})
 
\hspace{0.3cm}\Rightarrow \hspace{0.3cm}H_{\rm K}(f) = {\rm e}^{-
 
\hspace{0.3cm}\Rightarrow \hspace{0.3cm}H_{\rm K}(f) = {\rm e}^{-
{a}_{\rm \star} \cdot \sqrt{2f/R}}\cdot {\rm e}^{- {\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm} {a}_{\star} \cdot \sqrt{2f/R}}\hspace{0.4cm}{\rm mit}\hspace{0.2cm}{a}_{\star}\hspace{0.2cm}{\rm in}\hspace{0.2cm}{\rm Np}
+
{a}_{\rm \star} \cdot \sqrt{2f/R}}\cdot {\rm e}^{- {\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm} {a}_{\star} \cdot \sqrt{2f/R}}\hspace{0.4cm}{\rm with}\hspace{0.2cm}{a}_{\star}\hspace{0.2cm}{\rm in}\hspace{0.2cm}{\rm Np}
 
   \hspace{0.05cm}.$$
 
   \hspace{0.05cm}.$$
*The corresponding  $\rm dB$–value is greater by a factor of  $8.686$  größer. 
+
*The corresponding  $\rm dB$  value is greater by a factor of  $8.686$.  
*For a binary system,  $R = 1/T$ holds, so that the characteristic cable attenuation refers to the frequency  $f = 1/(2T)$ .
+
*For a binary system,  $R = 1/T$ holds,  so that the characteristic cable attenuation refers to the frequency  $f = 1/(2T)$.
  
  
The  [[Signal_Representation/Fourier_Transform_and_Its_Inverse#Fouriertransformation|Fourier transform]]  of  $H_{\rm K}(f)$  yields the impulse response  $h_{\rm K}(t)$, which can be specified in closed-analytic form for a coaxial cable using the approximations described here. For a binary system holds:
+
The  [[Signal_Representation/Fourier_Transform_and_Its_Inverse#Fouriertransformation|Fourier transform]]  of  $H_{\rm K}(f)$  yields the impulse response  $h_{\rm K}(t)$,  which can be specified in closed-analytic form for a coaxial cable using the approximations described here.  For a binary system holds:
 
:$$h_{\rm K}(t) =  \frac{ {a}_{\rm \star}/T}{  \sqrt{2  \pi^2 \cdot (t/T)^3}}\hspace{0.1cm} \cdot
 
:$$h_{\rm K}(t) =  \frac{ {a}_{\rm \star}/T}{  \sqrt{2  \pi^2 \cdot (t/T)^3}}\hspace{0.1cm} \cdot
 
   {\rm e}^{  - {{a}_{\rm \star}^2}/(2 \hspace{0.05cm} \pi  \cdot \hspace{0.05cm} t/T)}
 
   {\rm e}^{  - {{a}_{\rm \star}^2}/(2 \hspace{0.05cm} \pi  \cdot \hspace{0.05cm} t/T)}
 
   \hspace{0.4cm}{\rm with}\hspace{0.2cm}{a}_{\rm \star}\hspace{0.2cm}{\rm in}\hspace{0.2cm}{\rm Np}
 
   \hspace{0.4cm}{\rm with}\hspace{0.2cm}{a}_{\rm \star}\hspace{0.2cm}{\rm in}\hspace{0.2cm}{\rm Np}
 
\hspace{0.05cm}.$$
 
\hspace{0.05cm}.$$
Subtask  '''(5)'''  refers to the basic receiver  $g_r(t) = g_s(t) \star h_{\rm K}(t)$, where  $g_s(t)$  is assumed to be a rectangle with height  $s_0$  and duration  $T$ .
+
Subtask  '''(5)'''  refers to the basic reception pulse  $g_r(t) = g_s(t) \star h_{\rm K}(t)$, where the basic transmission pulse  $g_s(t)$  is assumed to be a rectangle  $($height  $s_0$,  duration  $T)$.
 
 
 
 
 
 
  
  
  
  
''Notes:''
+
Notes:  
 
*The exercise belongs to the chapter   [[Linear_and_Time_Invariant_Systems/Eigenschaften_von_Koaxialkabeln|Properties of Coaxial Cables]].
 
*The exercise belongs to the chapter   [[Linear_and_Time_Invariant_Systems/Eigenschaften_von_Koaxialkabeln|Properties of Coaxial Cables]].
 
   
 
   
*You can use the interactive applet  [[Applets:Zeitverhalten_von_Kupferkabeln|Zeitverhalten von Kupferkabeln]]  to check your results.
+
*You can use the  (German language)  interactive SWF applet  [[Applets:Zeitverhalten_von_Kupferkabeln|"Zeitverhalten von Kupferkabeln"]]   ⇒   "Time behavior of copper cables"  to check your results.
  
  

Revision as of 18:27, 12 November 2021

Impulse response of a coaxial cable

The frequency response of a coaxial cable  (German:  "Koaxialkabel"   ⇒   subscipt  "K")  of length  $l$  can be represented by the following formula:

$$H_{\rm K}(f) = {\rm e}^{- \alpha_0 \hspace{0.05cm} \cdot \hspace{0.05cm} l} \cdot {\rm e}^{- (\alpha_1 + {\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} \beta_1) \hspace{0.05cm}\cdot f \hspace{0.05cm}\cdot \hspace{0.05cm}l} \cdot {\rm e}^{- (\alpha_2 + {\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} \beta_2) \hspace{0.05cm}\cdot \sqrt{f} \hspace{0.05cm}\cdot \hspace{0.05cm}l} \hspace{0.05cm}.$$

The first term of this equation is due to the ohmic losses,  the second term to the transverse losses.  Dominant,  however,  is the skin effect,  which is expressed by the third term.

With the coefficients valid for the  "standard coaxial cable"  $\text{(2.6 mm}$  core diameter,  $\text{9.5 mm}$  outer diameter$)$ 

$$\alpha_2 = 0.2722 \hspace{0.15cm}\frac {\rm Np}{\rm km \cdot \sqrt{\rm MHz}} \hspace{0.05cm}, \hspace{0.2cm} \beta_2 = 0.2722 \hspace{0.15cm}\frac {\rm rad}{\rm km \cdot \sqrt{\rm MHz}}\hspace{0.05cm}$$

this frequency response can also be represented as follows:

$$H_{\rm K}(f) \approx {\rm e}^{- 0.2722 \hspace{0.05cm}\cdot \hspace{0.05cm}l/{\rm km} \hspace{0.05cm}\cdot \sqrt{f/{\rm MHz}} } \cdot {\rm e}^{- {\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm} 0.2722 \hspace{0.05cm}\cdot \hspace{0.05cm}l/{\rm km} \hspace{0.05cm}\cdot \sqrt{f/{\rm MHz}}} \hspace{0.05cm}.$$

That means:  

Attenuation curve  ${a}_{\rm K}(f)$  and phase curve  $b_{\rm K}(f)$  are identical except for the pseudo units  "Np"  and  "rad",  respectively.


If one defines the characteristic cable attenuation  ${a}_{\rm *}$  at half the bit rate  $($i.e., at  $R/2)$  and normalizes the frequency to  $R$,  one can treat digital systems of different bit rate and length uniformly:

$${a}_{\rm \star} = {a}_{\rm K}(f ={R}/{2}) \hspace{0.3cm}\Rightarrow \hspace{0.3cm}H_{\rm K}(f) = {\rm e}^{- {a}_{\rm \star} \cdot \sqrt{2f/R}}\cdot {\rm e}^{- {\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm} {a}_{\star} \cdot \sqrt{2f/R}}\hspace{0.4cm}{\rm with}\hspace{0.2cm}{a}_{\star}\hspace{0.2cm}{\rm in}\hspace{0.2cm}{\rm Np} \hspace{0.05cm}.$$
  • The corresponding  $\rm dB$  value is greater by a factor of  $8.686$.
  • For a binary system,  $R = 1/T$ holds,  so that the characteristic cable attenuation refers to the frequency  $f = 1/(2T)$.


The  Fourier transform  of  $H_{\rm K}(f)$  yields the impulse response  $h_{\rm K}(t)$,  which can be specified in closed-analytic form for a coaxial cable using the approximations described here.  For a binary system holds:

$$h_{\rm K}(t) = \frac{ {a}_{\rm \star}/T}{ \sqrt{2 \pi^2 \cdot (t/T)^3}}\hspace{0.1cm} \cdot {\rm e}^{ - {{a}_{\rm \star}^2}/(2 \hspace{0.05cm} \pi \cdot \hspace{0.05cm} t/T)} \hspace{0.4cm}{\rm with}\hspace{0.2cm}{a}_{\rm \star}\hspace{0.2cm}{\rm in}\hspace{0.2cm}{\rm Np} \hspace{0.05cm}.$$

Subtask  (5)  refers to the basic reception pulse  $g_r(t) = g_s(t) \star h_{\rm K}(t)$, where the basic transmission pulse  $g_s(t)$  is assumed to be a rectangle  $($height  $s_0$,  duration  $T)$.



Notes:

  • You can use the  (German language)  interactive SWF applet  "Zeitverhalten von Kupferkabeln"   ⇒   "Time behavior of copper cables"  to check your results.


Questions

1

Wie groß ist die Länge  $l$  eines Normalkoaxialkabels, wenn sich für die Bitrate  $R = 140 \ \rm Mbit/s$  die charakteristische Kabeldämpfung  ${a}_{\rm \star} = 60 \ \rm dB$  ergibt?

$l \ =\ $

$\ \rm km$

2

Zu welcher Zeit  $t_{\rm max}$  besitzt  $h_{\rm K}(t)$  sein Maximum? Es gelte weiter  ${a}_{\rm \star} = 60 \ \rm dB$.

$t_{\rm max} \ = \ $

$\ \cdot T$

3

Wie groß ist der Maximalwert der Impulsantwort?

${\rm Max}\, \big [h_{\rm K}(t)\big ] \ = \ $

$\ \cdot 1/T$

4

Ab welcher Zeit  $t_{\rm 5\%}$  ist  $h_{\rm K}(t)$  kleiner als  $5\%$  des Maximums?  Berücksichtigen Sie als Näherung nur den ersten Term der angegebenen Formel.

$t_{\rm 5\%} \ = \ $

$\ \cdot T$

5

Welche Aussagen treffen für den Empfangsgrundimpuls  $g_r(t)$  zu?

$g_r(t)$  ist doppelt so breit wie  $h_{\rm K}(t)$.
Es gilt näherungsweise  $g_r(t) = s_0 \cdot T \cdot h_{\rm K}(t)$.
$g_r(t)$  kann durch einen Gaußimpuls angenähert werden.


Solution

(1)  Die charakteristische Kabeldämpfung  ${a}_{\rm \star} = 60 \ \rm dB$  entspricht in etwa  $6.9\ \rm Np$. Deshalb muss gelten:

$$\alpha_2 \cdot l \cdot {R}/{2} = 6.9\,\,{\rm Np} \hspace{0.3cm}\Rightarrow \hspace{0.3cm} l = \frac{6.9\,\,{\rm Np}}{0.2722 \,\, {\rm Np}/({\rm km \cdot \sqrt{\rm MHz}}) \cdot \sqrt{70\,\,{\rm MHz}}}\hspace{0.15cm}\underline{ \approx 3\,\,{\rm km}} \hspace{0.05cm}.$$


(2)  Mit den Substitutionen

$$x = \frac{ t}{ T}, \hspace{0.2cm} K_1 = \frac{ {a}_{\rm \star}/T}{\sqrt{2 \pi^2 }}, \hspace{0.2cm} K_2 = \frac{ {a}_{\rm \star}^2}{2 \pi}$$

kann die Impulsantwort wie folgt beschrieben werden:

$$h_{\rm K}(x) = K_1 \cdot x^{-3/2}\cdot {\rm e}^{-K_2/x} \hspace{0.05cm}.$$
  • Durch Nullsetzen der Ableitung folgt daraus:
$$- {3}/{2} \cdot K_1 \cdot x^{-5/2}\cdot {\rm e}^{-K_2/x}+ K_1 \cdot x^{-3/2}\cdot {\rm e}^{-K_2/x}\cdot (-K_2) \cdot (-x^{-2})= 0 \hspace{0.05cm}.$$
$$\Rightarrow \hspace{0.3cm} {3}/{2} \cdot x^{-5/2} = K_2 \cdot x^{-7/2} \hspace{0.3cm}\Rightarrow \hspace{0.3cm} x_{\rm max} = {2}/{3} \cdot K_2 = \frac{{a}_{\rm \star}^2}{3 \pi} \hspace{0.05cm}.$$
  • Daraus ergibt sich für  $60 \ \rm dB$  Kabeldämpfung  $({a}_{\rm \star} \approx 6.9 \ \rm Np)$:
$$x_{\rm max} = { t_{\rm max}}/{ T}= { 6.9^2}/{(3\pi)}\hspace{0.15cm}\underline{ \approx 5 }\hspace{0.05cm}.$$


(3)  Setzt man das Ergebnis in die vorgegebene Gleichung ein, so erhält man (zur Vereinfachung verwenden wir "${a}$"anstelle von "${a}_{\rm \star}$"):

$$h_{\rm K}(t_{\rm max}) = \frac{1}{T} \cdot \frac{ {a}}{ \sqrt{2 \pi^2 \cdot {{a}^6}/{(3\pi)^3}}}\hspace{0.1cm} \cdot {\rm exp} \left[ - \frac{{a}^2}{2\pi} \cdot \frac{3\pi}{{\rm a}^2}\hspace{0.1cm}\right] = \frac{1}{T} \cdot \frac{1}{{a}^2}\cdot \sqrt{\frac{27 \pi }{2}} \cdot {\rm e}^{-3/2} \approx \frac{1}{T} \cdot \frac{1.453}{{a}^2} \hspace{0.05cm}.$$
  • Mit  $a = 6.9$  kommt man somit zum Endergebnis:
$${\rm Max}\,[h_{\rm K}(t)] = \frac{1.453}{{6.9\,}^2} \cdot {1}/{T}\hspace{0.15cm}\underline{\approx 0.03 \cdot {1}/{T}} \hspace{0.05cm}.$$


(4)  Mit dem Ergebnis aus  (3)  lautet die geeignete Bestimmungsgleichung:

$$\frac{ {a}/T}{ \sqrt{2 \pi^2 \cdot (t_{5\%}/T)^3}}= 0.05 \cdot 0.03 {1}/{T} \hspace{0.15cm}{= 0.0015 \cdot {1}/{T}} \hspace{0.2cm} \Rightarrow \hspace{0.2cm} (t_{5\%}/T)^{3/2} = \frac{a}{\sqrt{2} \cdot \pi \cdot 0.0015}\approx 1036 \hspace{0.3cm}\Rightarrow \hspace{0.3cm} \hspace{0.15cm}\underline{t_{5\%}/T \approx 103.5} \hspace{0.05cm}.$$
  • Dieser Wert ist etwas zu groß, da der zweite Term  ${\rm e}^{-0.05}\approx 0.95$  vernachlässigt wurde.
  • Die exakte Berechnung liefert  $t_{\rm 5\%}/T \approx 97$.


(5)  Richtig ist der zweite Lösungsvorschlag:

  • Allgemein gilt:
$$g_r(t) = g_s(t) \star h_{\rm K}(t) = s_0 \cdot \int_{t-T/2}^{t+T/2} h_{\rm K}(\tau) \,{\rm d} \tau .$$
  • Da sich die Kanalimpulsantwort $h_{\rm K}(t)$ innerhalb einer Symboldauer nur unwesentlich ändert, kann auch geschrieben werden:
$$g_r(t) = h_{\rm K}(t) \cdot s_0 \cdot T.$$