Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

Difference between revisions of "Aufgaben:Exercise 1.2Z: Sets of Digits"

From LNTwww
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Stochastische Signaltheorie/Mengentheoretische Grundlagen}}
+
{{quiz-Header|Buchseite=Theory_of_Stochastic_Signals/Set_Theory_Basics}}
  
 
[[File:EN_Sto_Z_1_2_neu.png|right|frame|Sets of digits  A,  B,  C]]
 
[[File:EN_Sto_Z_1_2_neu.png|right|frame|Sets of digits  A,  B,  C]]

Revision as of 17:11, 23 November 2021

Sets of digits  ABC

Let the universal set  G  be the set of all digits between  1  and  9.  Given are the following subsets:

A=[digits
B = \big[\text{digits divisible by 3}\big],
C = \big[\text{digits 5, 6, 7, 8}\big],

Besides these, let other sets be defined:

D = (A \cap \overline B) \cup (\overline A \cap B),
E = (A \cup B) \cap (\overline A \cup \overline B),
F = (A \cup C) \cap \overline B,
G = (\overline A \cap \overline C) \cup (A \cap B \cap C).

First consider which digits belong to the sets  DEF  and  H  and then answer the following questions.
Justify your answers in terms of set theory.





Hints:


Questions

1

Which of the following statements are correct?

A  and  B  are disjoint sets.
A  and  C  are disjoint sets.
B  and  C  are disjoint sets.

2

Which of the following statements are correct?

The union  A \cup B \cup C  gives the universal set  G.
The complementary set to  A \cap B \cap C  gives the universal set  G.

3

Which of the following statements is correct?

The complementary sets of  D  and  E  are identical.
F  is a subset of the complementary set of   B.
The sets  BC  and  D  form a complete system.
The sets  AC  and  H  form a complete system.


Solution

For the other sets defined in the problem holds:

D = (A \cap \overline B) \cup (\overline A \cap B) =\big[\{1, 2, 3\} \cap \{1, 2, 4, 5, 7, 8\}\big] \cup \big[\{4, 5, 6, 7, 8, 9\} \cap \{3, 6, 9\}\big] = \{1, 2, 6, 9\},
E = (A \cup B) \cap (\overline A \cup \overline B) = (A \cap \overline A) \cup (A \cap \overline B) \cup (\overline A \cap B) \cup (\overline A \cap \overline B) = (A \cap \overline B) \cup (\overline A \cap B) = D = \{1, 2, 6, 9\},
F = (A \cup C= \cap \overline B = \{1, 2, 3, 5, 6, 7, 8\} \cap \{1, 2, 4, 5, 7, 8\} = \{1, 2, 5, 7, 8\},
H = (\bar A \cap \overline C) \cup (A \cap B \cap C) = (\overline A \cap \overline C) \cup \phi = \{4, 9\}.

(1)  Only the proposed solution 2 is correct:

  • A  and  C  have no common element.
  • A  and  B  each contain a  3.
  • B  and  C  each contain a  6.


(2)  Correct is the proposed solution 2:

  • No digit is contained in  AB  and  C  at the same time   ⇒   A \cap B \cap C = \phi   ⇒   \overline{A \cap B \cap C} = \overline{\phi} = G.
  • The first proposition, on the other hand, is wrong. It is missing a  4.


(3)  Correct are the proposed solution 1, 2 and 4:

  • The first proposal is correct:   The sets  D  and  E  contain exactly the same elements and thus also their complementary sets.
  • The second proposal is also correct:   In general, i.e. for any  X  and  B  the following holds:  X \cap \overline B \subset \overline B \ \Rightarrow   With X = A \cup C it follows that F \subset \overline B.
  • The last proposal is also correct:   A = \{1, 2, 3\},  C = \{5, 6, 7, 8\}  and  H = \{4, 9\} form a "complete system".
  • The third suggestion, on the other hand, is wrong because  B  and  C  are not disjoint.