Difference between revisions of "Aufgaben:Exercise 2.1Z: DSB-AM without/with Carrier"
m |
m |
||
Line 34: | Line 34: | ||
{From the graph, determine the phase values of the source and carrier signals. | {From the graph, determine the phase values of the source and carrier signals. | ||
|type="{}"} | |type="{}"} | ||
− | $\phi_{\rm N} \ = \ $ { 0. } $\ \text{ | + | $\phi_{\rm N} \ = \ $ { 0. } $\ \text{degrees}$ |
− | $\phi_{\rm T} \ = \ $ { 0. } $\ \text{ | + | $\phi_{\rm T} \ = \ $ { 0. } $\ \text{degrees}$ |
{What is the frequency $f_{\rm N}$ of the message signal $q(t)$ and what is the frequency $f_{\rm T}$ of the carrier signal $z(t)$? | {What is the frequency $f_{\rm N}$ of the message signal $q(t)$ and what is the frequency $f_{\rm T}$ of the carrier signal $z(t)$? |
Revision as of 11:54, 24 November 2021
The red curve on the graph shows a section of the transmitted signal $s(t) = q(t) · z(t)$ of a double-sideband amplitude modulation (abbreviated as DSB-AM) without carrier. (abgekürzt mit ZSB-AM) ohne Träger. The duration of the time interval is $\rm 200 \ µ s$.
Additionally plotted in the graph are:
- the source signal (as a blue dashed curve):
- $$q(t) = 1\,{\rm V} \cdot \cos(2 \pi f_{\rm N} t + \phi_{\rm N}),$$
- the carrier signal (gray-dotted trace):
- $$z(t) = 1 \cdot \cos(2 \pi f_{\rm T} t + \phi_{\rm T})$$
From subtask (4) onwards, the "DSB-AM with carrier" is considered. In that case, with $A_{\rm T} = 2\text{ V}$:
- $$s(t) = \left(q(t) + A_{\rm T} \right) \cdot z(t) \hspace{0.05cm}.$$
Hints:
- This exercise belongs to the chapter Double-Sideband Amplitude Modulation.
- Particlar reference is made to the pages Description in the time domain and Double-Sideband Amplitude Modulation with carrier.
Fragebogen
Solution
(2) Aus der Grafik können für $q(t)$ und $z(t)$ die Periodendauern $200$ μs bzw. $20$ μs abgelesen werden.
- Daraus ergeben sich die Frequenzen zu $f_{\rm N} \hspace{0.15cm}\underline { = 5}$ kHz und $f_{\rm T} \hspace{0.15cm}\underline { = 50}$ kHz.
(3) Richtig sind die Lösungsvorschläge 1 und 2:
- Die Nullstellen von $z(t)$ bei $±5$ μs, $±15$ μs, $±25$ μs, ... sind auch im Signal $s(t)$ vorhanden ⇒ Aussage 1 ist richtig.
- Weitere Nullstellen von $s(t)$ – verursacht durch $q(t)$ – liegen bei $±50$ μs, $±150$ μs, $±250$ μs, .... ⇒ Aussage 2 ist richtig.
- Die dritte Aussage trifft dagegen nicht zu, sondern es gilt: $ s(t) = a(t) \cdot \cos[\omega_{\rm T} t + \phi (t)] \hspace{0.05cm}.$
- Für $q(t) > 0$ ist die Phasenfunktion $ϕ(t) = 0$ und $s(t)$ ist gleichlaufend mit $z(t)$.
- Dagegen gilt für $q(t) < 0$: $ϕ(t) = π = 180^\circ$.
- Bei den Nulldurchgängen von $q(t)$ weist das modulierte Signal $s(t)$ Phasensprünge auf.
(4) Das Spektrum $S(f)$ ergibt sich aus der Faltung der Spektralfunktionen $Z(f)$ und $Q(f)$, die jeweils aus nur zwei Diracfunktionen bestehen. Die Grafik zeigt das Ergebnis.
- Die rot eingezeichneten Diracfunktionen gelten nur für die „ZSB–AM mit Träger” und beziehen sich auf die Teilaufgabe (6).
- Die Faltung der beiden $Z(f)$–Diracfunktionen bei $f_{\rm T} = 50\text{ kHz}$ mit $Q(f)$ führt zu den Diraclinien bei $f_{\rm T} - f_{\rm N}$ und $f_{\rm T} + f_{\rm N}$, jeweils mit Gewicht $0.5 · 0.5\text{ V}= 0.25\text{ V}$.
- Die gesuchten Werte sind somit $f_1\hspace{0.15cm}\underline { = 45 \ \rm kHz}$ und $f_1\hspace{0.15cm}\underline { = 55 \ \rm kHz}$.
- Die mit zwei Markierungsstrichen versehene Diracfunktion $0.5 · δ(f + f_{\rm T})$ führt zu zwei weiteren Diraclinien bei $-f_1$ und $-f_2$.
(5) Der Modulationsgrad berechnet sich zu:
- $$ m = \frac{q_{\rm max}}{A_{\rm T}} = \frac{A_{\rm N}}{A_{\rm T}} \hspace{0.15cm}\underline {= 0.5} \hspace{0.05cm}.$$
(6) Richtig sind die Lösungsvorschläge 1 und 3:
- Gemäß der Skizze ergeben sich Diraclinien bei $±f_{\rm T}$, beide mit dem Impulsgewicht $A_{\rm T}/2 = 1\text{ V}$.
- Bei $m ≤ 1$ ist $q(t)$ in der Hüllkurve erkennbar und Hüllkurvendemodulation anwendbar.
- Allerdings muss diese einfachere Empfängervariante durch eine sehr viel größere Sendeleistung erkauft werden.
- In diesem Beispiel $(m = 0.5)$ wird die Sendeleistung durch den Trägerzusatz verneunfacht.