Difference between revisions of "Aufgaben:Exercise 2.1Z: DSB-AM without/with Carrier"

From LNTwww
m
Line 68: Line 68:
 
===Solution===
 
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''  Beide Signale sind cosinusförmig   ⇒    $ϕ_{\rm N} \hspace{0.15cm}\underline { = 0}$  und   $ϕ_{\rm T} \hspace{0.15cm}\underline { = 0}$.
+
'''(1)'''  Both signals are cosine   ⇒    $ϕ_{\rm N} \hspace{0.15cm}\underline { = 0}$  and   $ϕ_{\rm T} \hspace{0.15cm}\underline { = 0}$.
  
  
  
'''(2)'''  Aus der Grafik können für  $q(t)$  und $z(t)$ die Periodendauern  $200$ μs  bzw.  $20$ μs  abgelesen werden.  
+
'''(2)'''  From the graph, the period durations of   $200$ μs  and   $20$ μs   can be seen for  $q(t)$  and $z(t)$, respectively.  
*Daraus ergeben sich die Frequenzen zu  $f_{\rm N} \hspace{0.15cm}\underline { = 5}$  kHz und   $f_{\rm T} \hspace{0.15cm}\underline { = 50}$  kHz.
+
*This gives the frequencies as   $f_{\rm N} \hspace{0.15cm}\underline { = 5}$  kHz and   $f_{\rm T} \hspace{0.15cm}\underline { = 50}$  kHz.
  
  
'''(3)'''&nbsp; Richtig sind die <u>Lösungsvorschläge 1 und 2</u>:
+
'''(3)'''&nbsp; <u>Answers 1 and 2</u> are correct:
*Die Nullstellen von&nbsp; $z(t)$ &nbsp;bei&nbsp; $±5$ μs,&nbsp; $±15$ μs,&nbsp; $±25$ μs, ... sind auch im Signal&nbsp; $s(t)$&nbsp; vorhanden &nbsp; &rArr; &nbsp; Aussage 1 ist richtig.
+
*The zero crossings of&nbsp; $z(t)$ &nbsp;at&nbsp; $±5$ μs,&nbsp; $±15$ μs,&nbsp; $±25$ μs, ... ... are also present in the signal&nbsp; $s(t)$&nbsp; &nbsp; &rArr; &nbsp; Answer 1 is correct.
*Weitere Nullstellen von&nbsp; $s(t)$ &ndash; verursacht durch&nbsp; $q(t)$&nbsp; &ndash; liegen bei&nbsp; $±50$ μs,&nbsp; $±150$ μs,&nbsp; $±250$ μs, .... &nbsp; &rArr; &nbsp; Aussage 2 ist richtig.
+
*Other zero intersects of&nbsp; $s(t)$ &ndash; cause by&nbsp; $q(t)$&nbsp; &ndash; are present at&nbsp; $±50$ μs,&nbsp; $±150$ μs,&nbsp; $±250$ μs, .... &nbsp; &rArr; &nbsp; Answer 2 is also correct.
*Die dritte Aussage trifft dagegen nicht zu, sondern es gilt: &nbsp; $ s(t) = a(t) \cdot \cos[\omega_{\rm T} t + \phi (t)] \hspace{0.05cm}.$
+
*In contrast, the third statement is not true. Instead, &nbsp; $ s(t) = a(t) \cdot \cos[\omega_{\rm T} t + \phi (t)] \hspace{0.05cm}.$
*Für&nbsp; $q(t) > 0$&nbsp; ist die Phasenfunktion&nbsp; $ϕ(t) = 0$&nbsp; und&nbsp; $s(t)$&nbsp; ist gleichlaufend mit&nbsp; $z(t)$.  
+
*For&nbsp; $q(t) > 0$&nbsp; the phase function is&nbsp; $ϕ(t) = 0$&nbsp; and&nbsp; $s(t)$&nbsp; coincides with &nbsp; $z(t)$.  
*Dagegen gilt für&nbsp; $q(t) < 0$: &nbsp; $ϕ(t) = π = 180^\circ$.  
+
*n contrast, for&nbsp; $q(t) < 0$: &nbsp; $ϕ(t) = π = 180^\circ$.  
*Bei den Nulldurchgängen von&nbsp; $q(t)$&nbsp; weist das modulierte Signal&nbsp; $s(t)$&nbsp; Phasensprünge auf.
+
*BAt the zero crossings of&nbsp; $q(t)$&nbsp; , the modulated signal &nbsp; $s(t)$&nbsp; exhibits phase jumps.
  
  
  
[[File:EN_Mod_Z_2_1_d.png|right|frame|ZSB–AM–Spektrum&nbsp; $Z(f)$,&nbsp; $Q(f)$&nbsp; und&nbsp; $S(f)$]]
+
[[File:EN_Mod_Z_2_1_d.png|right|frame|DSB–AM Spectrum&nbsp; $Z(f)$,&nbsp; $Q(f)$&nbsp; and&nbsp; $S(f)$]]
'''(4)'''&nbsp; Das Spektrum&nbsp; $S(f)$&nbsp; ergibt sich aus der Faltung der Spektralfunktionen&nbsp; $Z(f)$&nbsp; und&nbsp; $Q(f)$, die jeweils aus nur zwei Diracfunktionen bestehen.&nbsp; Die Grafik zeigt das Ergebnis.
+
'''(4)'''&nbsp; The spectrum&nbsp; $S(f)$&nbsp; results from the convolution of the spectral functions &nbsp; $Z(f)$&nbsp; and&nbsp; $Q(f)$, each consisting of only two Dirac functions. The graph displays the result.
*Die rot eingezeichneten Diracfunktionen gelten nur für die&nbsp; „ZSB–AM mit Träger”&nbsp; und beziehen sich auf die Teilaufgabe&nbsp; ('''6)'''.  
+
*The Dirac functions plotted in red apply only to the "DSB-AM with carrier" and refer to subtask ('''6)'''.  
*Die Faltung der beiden&nbsp; $Z(f)$–Diracfunktionen bei&nbsp; $f_{\rm T} = 50\text{ kHz}$&nbsp; mit&nbsp; $Q(f)$&nbsp; führt zu den Diraclinien bei&nbsp; $f_{\rm T} - f_{\rm N}$&nbsp; und&nbsp; $f_{\rm T} + f_{\rm N}$, jeweils mit Gewicht&nbsp; $0.5 · 0.5\text{ V}= 0.25\text{ V}$.
+
*Convolution of the two&nbsp; $Z(f)$–Dirac functions at&nbsp; $f_{\rm T} = 50\text{ kHz}$&nbsp; with&nbsp; $Q(f)$&nbsp; leads to the Dirac lines at&nbsp; $f_{\rm T} - f_{\rm N}$&nbsp; and&nbsp; $f_{\rm T} + f_{\rm N}$, each with weight &nbsp; $0.5 · 0.5\text{ V}= 0.25\text{ V}$.
*Die gesuchten Werte sind somit&nbsp; $f_1\hspace{0.15cm}\underline { = 45 \ \rm kHz}$&nbsp; und&nbsp; $f_1\hspace{0.15cm}\underline { = 55 \ \rm kHz}$.  
+
*Thus, the desired values are &nbsp; $f_1\hspace{0.15cm}\underline { = 45 \ \rm kHz}$&nbsp; and&nbsp; $f_1\hspace{0.15cm}\underline { = 55 \ \rm kHz}$.  
*Die mit zwei Markierungsstrichen versehene Diracfunktion&nbsp; $0.5 · δ(f + f_{\rm T})$&nbsp; führt zu zwei weiteren Diraclinien bei&nbsp; $-f_1$&nbsp; und&nbsp; $-f_2$.
+
*The Dirac function&nbsp; $0.5 · δ(f + f_{\rm T})$&nbsp; with two markers leads to two more Dirac lines at &nbsp; $-f_1$&nbsp; and&nbsp; $-f_2$.
  
  
  
'''(5)'''&nbsp; Der Modulationsgrad berechnet sich zu:
+
'''(5)'''&nbsp; The modulation depth is calculated as:
 
:$$ m = \frac{q_{\rm max}}{A_{\rm T}} = \frac{A_{\rm N}}{A_{\rm T}} \hspace{0.15cm}\underline {= 0.5} \hspace{0.05cm}.$$
 
:$$ m = \frac{q_{\rm max}}{A_{\rm T}} = \frac{A_{\rm N}}{A_{\rm T}} \hspace{0.15cm}\underline {= 0.5} \hspace{0.05cm}.$$
  
  
'''(6)'''&nbsp; Richtig sind die <u>Lösungsvorschläge 1 und 3</u>:
+
'''(6)'''&nbsp; <u>Answers 1 and 3</u> are correct:
*Gemäß der Skizze ergeben sich Diraclinien bei&nbsp; $±f_{\rm T}$, beide mit dem Impulsgewicht&nbsp; $A_{\rm T}/2 = 1\text{ V}$.  
+
*According to the sketch, Dirac lines result at &nbsp; $±f_{\rm T}$, both with impulse weight&nbsp; $A_{\rm T}/2 = 1\text{ V}$.  
*Bei&nbsp; $m ≤ 1$&nbsp; ist&nbsp; $q(t)$&nbsp; in der Hüllkurve erkennbar und Hüllkurvendemodulation anwendbar.  
+
*At&nbsp; $m ≤ 1$&nbsp;,&nbsp; $q(t)$&nbsp; is detectable in the envelope and envelope demodulation is applicable.  
*Allerdings muss diese einfachere Empfängervariante durch eine sehr viel größere Sendeleistung erkauft werden.&nbsp;  
+
*However, this simpler receiver variant must be accounted for with a much larger transmission power. &nbsp;  
*In diesem Beispiel&nbsp; $(m = 0.5)$&nbsp; wird die Sendeleistung durch den Trägerzusatz verneunfacht.  
+
*In this example&nbsp; $(m = 0.5)$&nbsp; the addition of a carrier multiplies the transmission power by nine.
  
 
{{ML-Fuß}}
 
{{ML-Fuß}}

Revision as of 12:24, 24 November 2021

Die bei der AM beteiligten Signale

The red curve on the graph shows a section of the transmitted signal  $s(t) = q(t) · z(t)$  of a double-sideband amplitude modulation (abbreviated as DSB-AM) without carrier.   (abgekürzt mit ZSB-AM)  ohne Träger. The duration of the time interval is  $\rm 200 \ µ s$.

Additionally plotted in the graph are:

  • the source signal (as a blue dashed curve):
$$q(t) = 1\,{\rm V} \cdot \cos(2 \pi f_{\rm N} t + \phi_{\rm N}),$$
  • the carrier signal (as a grey dashed trace):
$$z(t) = 1 \cdot \cos(2 \pi f_{\rm T} t + \phi_{\rm T})$$

From subtask (4) onwards, the "DSB-AM with carrier" is considered. In that case, with  $A_{\rm T} = 2\text{ V}$:

$$s(t) = \left(q(t) + A_{\rm T} \right) \cdot z(t) \hspace{0.05cm}.$$





Hints:



Fragebogen

1

From the graph, determine the phase values of the source and carrier signals.

$\phi_{\rm N} \ = \ $

$\ \text{degrees}$
$\phi_{\rm T} \ = \ $

$\ \text{degrees}$

2

What is the frequency $f_{\rm N}$  of the message signal  $q(t)$  and what is the frequency $f_{\rm T}$  of the carrier signal  $z(t)$?

$f_{\rm N} \ = \ $

$\ \text{kHz}$
$f_{\rm T} \ = \ $

$\ \text{kHz}$

3

Analyze the zero crossings of  $s(t)$. Which statements are true?

All zero crossings of  $z(t)$  are preserved in  $s(t)$ .
There are additional zero crossings caused by  $q(t)$.
 $s(t) = a(t) · \cos(ω_T · t)$  holds with  $a(t) = |q(t)|$.

4

Determine the spectral function  $S(f)$  by convolution.  Which (positive) frequencies $f_1$  and $f_2 > f_1$  are included in the signal??

$f_1 \ = \ $

$\ \text{kHz}$
$f_2\ = \ $

$\ \text{kHz}$

5

Let  $A_{\rm T} = 2\text{ V}$.  What is the modulation depth  $m$?

$m \ = \ $

6

WWhich of the statements are true for   „DSB–AM with carrier”  and  $A_{\rm T} = 2\text{ V}$ ?

$S(f)$  now includes Dirac functions at  $±f_{\rm T}$.
The weights of these Dirac lines are each  $2\text{ V}$.
$q(t)$  can be seen in the envelope of  $s(t)$ .
Due to the additional carrier component, the power remains unchanged..


Solution

(1)  Both signals are cosine   ⇒   $ϕ_{\rm N} \hspace{0.15cm}\underline { = 0}$  and  $ϕ_{\rm T} \hspace{0.15cm}\underline { = 0}$.


(2)  From the graph, the period durations of   $200$ μs  and   $20$ μs   can be seen for $q(t)$  and $z(t)$, respectively.

  • This gives the frequencies as   $f_{\rm N} \hspace{0.15cm}\underline { = 5}$  kHz and  $f_{\rm T} \hspace{0.15cm}\underline { = 50}$ kHz.


(3)  Answers 1 and 2 are correct:

  • The zero crossings of  $z(t)$  at  $±5$ μs,  $±15$ μs,  $±25$ μs, ... ... are also present in the signal  $s(t)$    ⇒   Answer 1 is correct.
  • Other zero intersects of  $s(t)$ – cause by  $q(t)$  – are present at  $±50$ μs,  $±150$ μs,  $±250$ μs, ....   ⇒   Answer 2 is also correct.
  • In contrast, the third statement is not true. Instead,   $ s(t) = a(t) \cdot \cos[\omega_{\rm T} t + \phi (t)] \hspace{0.05cm}.$
  • For  $q(t) > 0$  the phase function is  $ϕ(t) = 0$  and  $s(t)$  coincides with   $z(t)$.
  • n contrast, for  $q(t) < 0$:   $ϕ(t) = π = 180^\circ$.
  • BAt the zero crossings of  $q(t)$  , the modulated signal   $s(t)$  exhibits phase jumps.


DSB–AM Spectrum  $Z(f)$,  $Q(f)$  and  $S(f)$

(4)  The spectrum  $S(f)$  results from the convolution of the spectral functions   $Z(f)$  and  $Q(f)$, each consisting of only two Dirac functions. The graph displays the result.

  • The Dirac functions plotted in red apply only to the "DSB-AM with carrier" and refer to subtask (6).
  • Convolution of the two  $Z(f)$–Dirac functions at  $f_{\rm T} = 50\text{ kHz}$  with  $Q(f)$  leads to the Dirac lines at  $f_{\rm T} - f_{\rm N}$  and  $f_{\rm T} + f_{\rm N}$, each with weight   $0.5 · 0.5\text{ V}= 0.25\text{ V}$.
  • Thus, the desired values are   $f_1\hspace{0.15cm}\underline { = 45 \ \rm kHz}$  and  $f_1\hspace{0.15cm}\underline { = 55 \ \rm kHz}$.
  • The Dirac function  $0.5 · δ(f + f_{\rm T})$  with two markers leads to two more Dirac lines at   $-f_1$  and  $-f_2$.


(5)  The modulation depth is calculated as:

$$ m = \frac{q_{\rm max}}{A_{\rm T}} = \frac{A_{\rm N}}{A_{\rm T}} \hspace{0.15cm}\underline {= 0.5} \hspace{0.05cm}.$$


(6)  Answers 1 and 3 are correct:

  • According to the sketch, Dirac lines result at   $±f_{\rm T}$, both with impulse weight  $A_{\rm T}/2 = 1\text{ V}$.
  • At  $m ≤ 1$ ,  $q(t)$  is detectable in the envelope and envelope demodulation is applicable.
  • However, this simpler receiver variant must be accounted for with a much larger transmission power.  
  • In this example  $(m = 0.5)$  the addition of a carrier multiplies the transmission power by nine.