Difference between revisions of "Aufgaben:Exercise 2.1Z: DSB-AM without/with Carrier"

From LNTwww
m
Line 3: Line 3:
 
}}
 
}}
  
[[File:P_ID987__Mod_Z_2_1.png|right|frame|The signals involved in AM]]
+
[[File:P_ID987__Mod_Z_2_1.png|right|frame|The signals involved in this AM]]
The red curve on the graph shows a section of the transmitted signal  $s(t) = q(t) · z(t)$   of a double-sideband amplitude modulation (abbreviated as DSB-AM) without carrier.   (abgekürzt mit ZSB-AM)  ohne Träger. The duration of the time interval is  $\rm 200 \ µ s$.
+
The red curve on the graph shows a section of the transmitted signal  $s(t) = q(t) · z(t)$   of a double-sideband amplitude modulation  (abbreviated as DSB-AM)  without carrier.  The duration of the time interval is  $\rm 200 \ µ s$.
  
 
Additionally plotted in the graph are:
 
Additionally plotted in the graph are:
*the source signal (as a blue dashed curve):
+
*the source signal  (as a blue dashed curve):
 
:$$q(t) = 1\,{\rm V} \cdot \cos(2 \pi f_{\rm N} t + \phi_{\rm N}),$$
 
:$$q(t) = 1\,{\rm V} \cdot \cos(2 \pi f_{\rm N} t + \phi_{\rm N}),$$
*the carrier signal (as a grey dashed trace):
+
*the carrier signal  (as a grey dashed trace):
:$$z(t) = 1 \cdot \cos(2 \pi f_{\rm T} t + \phi_{\rm T})$$
+
:$$z(t) = 1 \cdot \cos(2 \pi f_{\rm T} t + \phi_{\rm T}).$$
  
From subtask '''(4)''' onwards, the "DSB-AM with carrier" is considered.  In that case, with  $A_{\rm T} = 2\text{ V}$:
+
From subtask  '''(4)'''  onwards,  the "DSB-AM with carrier"  is considered.  In that case, with  $A_{\rm T} = 2\text{ V}$:
 
:$$s(t) = \left(q(t) + A_{\rm T} \right) \cdot z(t) \hspace{0.05cm}.$$
 
:$$s(t) = \left(q(t) + A_{\rm T} \right) \cdot z(t) \hspace{0.05cm}.$$
  
Line 19: Line 19:
  
  
 
+
Hints:  
 
 
 
 
''Hints:''
 
 
*This exercise belongs to the chapter  [[Modulation_Methods/Double-Sideband_Amplitude_Modulation|Double-Sideband Amplitude Modulation]].
 
*This exercise belongs to the chapter  [[Modulation_Methods/Double-Sideband_Amplitude_Modulation|Double-Sideband Amplitude Modulation]].
 
*Particlar reference is made to the pages  [[Modulation_Methods/Double-Sideband_Amplitude_Modulation#Description_in_the_time_domain|Description in the time domain]]  and  [[Modulation_Methods/Double-Sideband_Amplitude_Modulation#Double-Sideband_Amplitude_Modulation_with_carrier|Double-Sideband Amplitude Modulation with carrier]].
 
*Particlar reference is made to the pages  [[Modulation_Methods/Double-Sideband_Amplitude_Modulation#Description_in_the_time_domain|Description in the time domain]]  and  [[Modulation_Methods/Double-Sideband_Amplitude_Modulation#Double-Sideband_Amplitude_Modulation_with_carrier|Double-Sideband Amplitude Modulation with carrier]].
Line 32: Line 29:
  
 
<quiz display=simple>
 
<quiz display=simple>
{From the graph, determine the phase values of the source and carrier signals.
+
{From the graph,&nbsp; determine the phase values of the message and carrier signals.
 
|type="{}"}
 
|type="{}"}
 
$\phi_{\rm N} \ = \ $ { 0. } $\ \text{degrees}$
 
$\phi_{\rm N} \ = \ $ { 0. } $\ \text{degrees}$
Line 42: Line 39:
 
$f_{\rm T} \ = \ $  { 50 3% }  $\ \text{kHz}$
 
$f_{\rm T} \ = \ $  { 50 3% }  $\ \text{kHz}$
  
{Analyze the zero crossings of &nbsp;$s(t)$. Which statements are true?
+
{Analyze the zero crossings of &nbsp;$s(t)$.&nbsp; Which statements are true?
 
|type="[]"}
 
|type="[]"}
+ All zero crossings of  &nbsp;$z(t)$&nbsp; are preserved in &nbsp;$s(t)$&nbsp;.
+
+ All zero crossings of  &nbsp;$z(t)$&nbsp; are preserved in &nbsp;$s(t)$.
 
+ There are additional zero crossings caused by &nbsp;$q(t)$.
 
+ There are additional zero crossings caused by &nbsp;$q(t)$.
 
- &nbsp;$s(t) = a(t) · \cos(ω_T · t)$&nbsp; holds with &nbsp;$a(t) = |q(t)|$.
 
- &nbsp;$s(t) = a(t) · \cos(ω_T · t)$&nbsp; holds with &nbsp;$a(t) = |q(t)|$.
  
{Determine the spectral function &nbsp;$S(f)$&nbsp; by convolution.&nbsp;  Which (positive) frequencies  $f_1$&nbsp; and $f_2 > f_1$&nbsp; are included in the signal??
+
{Determine the spectral function &nbsp;$S(f)$&nbsp; by convolution.&nbsp;  Which&nbsp; (positive)&nbsp; frequencies&nbsp; $f_1$&nbsp; and&nbsp; $f_2 > f_1$&nbsp; are included in the signal??
 
|type="{}"}
 
|type="{}"}
 
$f_1 \ = \ $ { 45 3% } $\ \text{kHz}$
 
$f_1 \ = \ $ { 45 3% } $\ \text{kHz}$
Line 57: Line 54:
 
$m \ = \ $ { 0.5 3% }  
 
$m \ = \ $ { 0.5 3% }  
  
{WWhich of the statements are true for &nbsp; „DSB–AM with carrier”&nbsp; and &nbsp;$A_{\rm T} = 2\text{ V}$&nbsp;?
+
{Which of the statements are true for &nbsp; "DSB–AM with carrier"&nbsp; and &nbsp;$A_{\rm T} = 2\text{ V}$&nbsp;?
 
|type="[]"}
 
|type="[]"}
+  $S(f)$&nbsp; now includes Dirac functions at &nbsp;$±f_{\rm T}$.
+
+  $S(f)$&nbsp; now includes Dirac delta functions at &nbsp;$±f_{\rm T}$.
 
-  The weights of these Dirac lines are each &nbsp;$2\text{ V}$.
 
-  The weights of these Dirac lines are each &nbsp;$2\text{ V}$.
+  $q(t)$&nbsp; can be seen in the envelope of &nbsp;$s(t)$&nbsp;.
+
+  $q(t)$&nbsp; can be seen in the envelope of &nbsp;$s(t)$.
-  Due to the additional carrier component, the power remains unchanged..
+
-  Due to the additional carrier component,&nbsp; the power remains unchanged.
  
 
</quiz>
 
</quiz>

Revision as of 14:30, 29 November 2021

The signals involved in this AM

The red curve on the graph shows a section of the transmitted signal  $s(t) = q(t) · z(t)$  of a double-sideband amplitude modulation  (abbreviated as DSB-AM)  without carrier.  The duration of the time interval is  $\rm 200 \ µ s$.

Additionally plotted in the graph are:

  • the source signal  (as a blue dashed curve):
$$q(t) = 1\,{\rm V} \cdot \cos(2 \pi f_{\rm N} t + \phi_{\rm N}),$$
  • the carrier signal  (as a grey dashed trace):
$$z(t) = 1 \cdot \cos(2 \pi f_{\rm T} t + \phi_{\rm T}).$$

From subtask  (4)  onwards,  the "DSB-AM with carrier"  is considered.  In that case, with  $A_{\rm T} = 2\text{ V}$:

$$s(t) = \left(q(t) + A_{\rm T} \right) \cdot z(t) \hspace{0.05cm}.$$



Hints:



Fragebogen

1

From the graph,  determine the phase values of the message and carrier signals.

$\phi_{\rm N} \ = \ $

$\ \text{degrees}$
$\phi_{\rm T} \ = \ $

$\ \text{degrees}$

2

What is the frequency $f_{\rm N}$  of the message signal  $q(t)$  and what is the frequency $f_{\rm T}$  of the carrier signal  $z(t)$?

$f_{\rm N} \ = \ $

$\ \text{kHz}$
$f_{\rm T} \ = \ $

$\ \text{kHz}$

3

Analyze the zero crossings of  $s(t)$.  Which statements are true?

All zero crossings of  $z(t)$  are preserved in  $s(t)$.
There are additional zero crossings caused by  $q(t)$.
 $s(t) = a(t) · \cos(ω_T · t)$  holds with  $a(t) = |q(t)|$.

4

Determine the spectral function  $S(f)$  by convolution.  Which  (positive)  frequencies  $f_1$  and  $f_2 > f_1$  are included in the signal??

$f_1 \ = \ $

$\ \text{kHz}$
$f_2\ = \ $

$\ \text{kHz}$

5

Let  $A_{\rm T} = 2\text{ V}$.  What is the modulation depth  $m$?

$m \ = \ $

6

Which of the statements are true for   "DSB–AM with carrier"  and  $A_{\rm T} = 2\text{ V}$ ?

$S(f)$  now includes Dirac delta functions at  $±f_{\rm T}$.
The weights of these Dirac lines are each  $2\text{ V}$.
$q(t)$  can be seen in the envelope of  $s(t)$.
Due to the additional carrier component,  the power remains unchanged.


Solution

(1)  Both signals are cosine   ⇒   $ϕ_{\rm N} \hspace{0.15cm}\underline { = 0}$  and  $ϕ_{\rm T} \hspace{0.15cm}\underline { = 0}$.


(2)  From the graph, the period durations of   $200$ μs  and   $20$ μs   can be seen for $q(t)$  and $z(t)$, respectively.

  • This gives the frequencies as   $f_{\rm N} \hspace{0.15cm}\underline { = 5}$  kHz and  $f_{\rm T} \hspace{0.15cm}\underline { = 50}$ kHz.


(3)  Answers 1 and 2 are correct:

  • The zero crossings of  $z(t)$  at  $±5$ μs,  $±15$ μs,  $±25$ μs, ... ... are also present in the signal  $s(t)$    ⇒   Answer 1 is correct.
  • Other zero intersects of  $s(t)$ – cause by  $q(t)$  – are present at  $±50$ μs,  $±150$ μs,  $±250$ μs, ....   ⇒   Answer 2 is also correct.
  • In contrast, the third statement is not true. Instead,   $ s(t) = a(t) \cdot \cos[\omega_{\rm T} t + \phi (t)] \hspace{0.05cm}.$
  • For  $q(t) > 0$  the phase function is  $ϕ(t) = 0$  and  $s(t)$  coincides with   $z(t)$.
  • n contrast, for  $q(t) < 0$:   $ϕ(t) = π = 180^\circ$.
  • BAt the zero crossings of  $q(t)$  , the modulated signal   $s(t)$  exhibits phase jumps.


DSB–AM Spectrum  $Z(f)$,  $Q(f)$  and  $S(f)$

(4)  The spectrum  $S(f)$  results from the convolution of the spectral functions   $Z(f)$  and  $Q(f)$, each consisting of only two Dirac functions. The graph displays the result.

  • The Dirac functions plotted in red apply only to the "DSB-AM with carrier" and refer to subtask (6).
  • Convolution of the two  $Z(f)$–Dirac functions at  $f_{\rm T} = 50\text{ kHz}$  with  $Q(f)$  leads to the Dirac lines at  $f_{\rm T} - f_{\rm N}$  and  $f_{\rm T} + f_{\rm N}$, each with weight   $0.5 · 0.5\text{ V}= 0.25\text{ V}$.
  • Thus, the desired values are   $f_1\hspace{0.15cm}\underline { = 45 \ \rm kHz}$  and  $f_1\hspace{0.15cm}\underline { = 55 \ \rm kHz}$.
  • The Dirac function  $0.5 · δ(f + f_{\rm T})$  with two markers leads to two more Dirac lines at   $-f_1$  and  $-f_2$.


(5)  The modulation depth is calculated as:

$$ m = \frac{q_{\rm max}}{A_{\rm T}} = \frac{A_{\rm N}}{A_{\rm T}} \hspace{0.15cm}\underline {= 0.5} \hspace{0.05cm}.$$


(6)  Answers 1 and 3 are correct:

  • According to the sketch, Dirac lines result at   $±f_{\rm T}$, both with impulse weight  $A_{\rm T}/2 = 1\text{ V}$.
  • At  $m ≤ 1$ ,  $q(t)$  is detectable in the envelope and envelope demodulation is applicable.
  • However, this simpler receiver variant must be accounted for with a much larger transmission power.  
  • In this example  $(m = 0.5)$  the addition of a carrier multiplies the transmission power by nine.