Difference between revisions of "Aufgaben:Exercise 2.5Z: Flower Meadow"

From LNTwww
Line 38: Line 38:
  
  
{Determine the dispersion of the random variable  $z$.
+
{Determine the rms of the random variable  $z$.
 
|type="{}"}
 
|type="{}"}
 
$\sigma_z\ = \ $ { 1.732 3% }
 
$\sigma_z\ = \ $ { 1.732 3% }
Line 47: Line 47:
 
+ Actually, one would have to use considerably more than ten random numbers (squares) for the moment calculation.
 
+ Actually, one would have to use considerably more than ten random numbers (squares) for the moment calculation.
 
+ The random size $z$  is in fact Poisson distributed.
 
+ The random size $z$  is in fact Poisson distributed.
- The rate  $\lambda$  of the Poisson distribution is equal to the dispersion  $\sigma_z$.
+
- The rate  $\lambda$  of the Poisson distribution is equal to the rms  $\sigma_z$.
 
+ The rate  $\lambda$  of the Poisson distribution is equal to the mean  $m_z$.
 
+ The rate  $\lambda$  of the Poisson distribution is equal to the mean  $m_z$.
  
Line 66: Line 66:
 
===Musterlösung===
 
===Musterlösung===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''  Der lineare Mittelwert dieser zehn Zahlen ergibt  $\underline{m_z = 3}$.
+
'''(1)'''  The linear mean of these ten numbers gives  $\underline{m_z = 3}$.
  
  
'''(2)'''  Für den quadratischen Mittelwert der Zufallsgröße  $z$  gilt entsprechend:
+
'''(2)'''  For the quadratic mean of the random variable  $z$  applies accordingly:
 
:$$m_{\rm 2\it z}=\frac{1}{10}\cdot (0^2+1^2+ 2\cdot 2^2+ 2\cdot 3^2+2\cdot 4^2+ 5^2+6^2)=12.$$
 
:$$m_{\rm 2\it z}=\frac{1}{10}\cdot (0^2+1^2+ 2\cdot 2^2+ 2\cdot 3^2+2\cdot 4^2+ 5^2+6^2)=12.$$
  
*Die Varianz ist nach dem Satz von Steiner somit gleich
+
*According to Steiner's theorem, the variance is thus equal to.
 
:$$\sigma_z^2 =12 -3^2 = 3$$
 
:$$\sigma_z^2 =12 -3^2 = 3$$
:und dementsprechend die Streuung
+
:and accordingly the rms
:$$\underline{\sigma_z \approx 1.732}.$$
+
:$$\underline{\sigma_z \approx 1.732}.$$
  
  
  
'''(3)'''&nbsp; Richtig sind die <u>Lösungsvorschläge 1, 2 und 4</u>:
+
'''(3)'''&nbsp; Correct <u>solutions 1, 2, and 4</u>:
*Mittelwert und Streuung stimmen hier überein.&nbsp; Dies ist ein Indiz für die Poissonverteilung mit der Rate&nbsp; $\lambda = 3$&nbsp; (gleich dem Mittelwert und gleich der Varianz, nicht gleich der Streuung).  
+
*Mean and rms agree here.&nbsp; This is indicative of the Poisson distribution with rate&nbsp; $\lambda = 3$&nbsp; (equal to the mean and equal to the variance, not equal to the rms).  
*Nat&uuml;rlich ist es fragw&uuml;rdig, diese Aussage auf der Basis von nur zehn Werten zu treffen. Bei den Momenten ist eine geringere Stichprobenanzahl aber weniger gravierend als beispielsweise bei den Wahrscheinlichkeiten.
+
*Naturally, it is questionable to make this statement on the basis of only ten values. However, in the case of moments, a smaller sample number is less serious than, for example, in the case of probabilities.
  
  
  
'''(4)'''&nbsp; Insgesamt gibt es&nbsp; $80000$&nbsp; solcher Quadrate mit jeweils drei Blumen im Mittel.&nbsp;  
+
'''(4)'''&nbsp; In total, there&nbsp; are $80000$&nbsp; such squares, each with three flowers in the mean.&nbsp;  
*Dies l&auml;sst auf insgesamt&nbsp; $\underline{B = 240}$&nbsp; Tausend Blumen schlie&szlig;en.
+
*This suggests a total of &nbsp; $\underline{B = 240}$&nbsp; thousand flowers.
  
  
  
'''(5)'''&nbsp; Diese Wahrscheinlichkeit ergibt sich gemäß der Poissonverteilung zu
+
'''(5)'''&nbsp; According to the Poisson distribution, this probability results in
:$${\rm Pr}(z = 0) = \frac{3^0}{0!} \cdot{\rm e}^{-3}\hspace{0.15cm}\underline{\approx 5\%}.$$  
+
$${\rm Pr}(z = 0) = \frac{3^0}{0!} \cdot{\rm e}^{-3}\hspace{0.15cm}\underline{\approx 5\%}.$$  
 +
 
 +
*However, the small sample size&nbsp; $N = 10$&nbsp; on which this task was based would have indicated probability&nbsp; ${\rm Pr}(z = 0) = { 10\%}$&nbsp; since only in a single square no single flower was counted.
  
*Die dieser Aufgabe zugrunde gelegte kleine Stichprobenmenge&nbsp; $N = 10$&nbsp; h&auml;tte allerdings auf die Wahrscheinlichkeit&nbsp; ${\rm Pr}(z = 0) = { 10\%}$&nbsp; hingedeutet,&nbsp; da nur in einem einzigen Quadrat keine einzige Blume gez&auml;hlt wurde.
 
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  

Revision as of 22:46, 15 December 2021

flower meadow – another
example of the Poisson distribution

A farmer is happy about the splendor of flowers on his land and wants to know how many dandelions are currently blooming on his meadow.

  • He knows that the meadow has an area of $5000$  square meters and he also knows from the agricultural school that the number of flowers in a small area is always poisson distributed.
  • He stakes out ten squares, each with an edge length of   $\text{25 cm}$ , randomly distributed over the entire meadow and counts the flowers in each of these squares:
$$\rm 3, \ 4, \ 1, \ 5, \ 0, \ 3, \ 2, \ 4, \ 2, \ 6.$$

Consider these numerical values as random results of the discrete random variable  $z$.

It is obvious that the sample size is very small at  $10$  but – this much is revealed – the farmer is lucky.  First consider how you would proceed to solve this task, and then answer the following questions.





Hints:




Questions

1

Find the mean of  $z$,  that is, the mean number of flowers counted in the ten squares.

$m_z \ =$

2

Determine the rms of the random variable  $z$.

$\sigma_z\ = \ $

3

Which of the following statements are true?

Actually, one would have to use considerably more than ten random numbers (squares) for the moment calculation.
The random size $z$  is in fact Poisson distributed.
The rate  $\lambda$  of the Poisson distribution is equal to the rms  $\sigma_z$.
The rate  $\lambda$  of the Poisson distribution is equal to the mean  $m_z$.

4

Predict the total number  $B$  of all flowers in the meadow.

$B\ = \ $

$\ \text{thousand}$

5

What is the probability of a square without any flowers?

${\rm Pr}(z = 0) \ = \ $

$\ \%$


Musterlösung

(1)  The linear mean of these ten numbers gives  $\underline{m_z = 3}$.


(2)  For the quadratic mean of the random variable  $z$  applies accordingly:

$$m_{\rm 2\it z}=\frac{1}{10}\cdot (0^2+1^2+ 2\cdot 2^2+ 2\cdot 3^2+2\cdot 4^2+ 5^2+6^2)=12.$$
  • According to Steiner's theorem, the variance is thus equal to.
$$\sigma_z^2 =12 -3^2 = 3$$
and accordingly the rms
$$\underline{\sigma_z \approx 1.732}.$$


(3)  Correct solutions 1, 2, and 4:

  • Mean and rms agree here.  This is indicative of the Poisson distribution with rate  $\lambda = 3$  (equal to the mean and equal to the variance, not equal to the rms).
  • Naturally, it is questionable to make this statement on the basis of only ten values. However, in the case of moments, a smaller sample number is less serious than, for example, in the case of probabilities.


(4)  In total, there  are $80000$  such squares, each with three flowers in the mean. 

  • This suggests a total of   $\underline{B = 240}$  thousand flowers.


(5)  According to the Poisson distribution, this probability results in $${\rm Pr}(z = 0) = \frac{3^0}{0!} \cdot{\rm e}^{-3}\hspace{0.15cm}\underline{\approx 5\%}.$$

  • However, the small sample size  $N = 10$  on which this task was based would have indicated probability  ${\rm Pr}(z = 0) = { 10\%}$  since only in a single square no single flower was counted.