Difference between revisions of "Aufgaben:Exercise 3.1Z: Triangular PDF"
Line 1: | Line 1: | ||
− | {{quiz-Header|Buchseite= | + | {{quiz-Header|Buchseite=Theory_of_Stochastic_Signals/Probability_Density_Function_(PDF) |
}} | }} | ||
Line 10: | Line 10: | ||
Die Zufallsgröße $x$ soll hier als der Momentanwert eines Zufallssignals aufgefasst werden. Gibt man dieses Signal $x(t)$ auf einen Amplitudenbegrenzer mit der Kennlinie (siehe untere Skizze) | Die Zufallsgröße $x$ soll hier als der Momentanwert eines Zufallssignals aufgefasst werden. Gibt man dieses Signal $x(t)$ auf einen Amplitudenbegrenzer mit der Kennlinie (siehe untere Skizze) | ||
− | $$y(t)=\left\{\begin{array}{*{4}{c}} -2\hspace{0.05cm} {\rm V} & {\rm falls}\hspace{0.1cm} x(t)<-2\hspace{0.05cm} {\rm V} , \\ x(t) & | + | $$y(t)=\left\{\begin{array}{*{4}{c}} -2\hspace{0.05cm} {\rm V} & {\rm falls}\hspace{0.1cm} x(t)<-2\hspace{0.05cm} {\rm V} , \\ x(t) & {\rm falls}\hspace{0.1cm}-2\hspace{0.05cm} {\rm V} \le x(t)\le +2\hspace{0.05cm} {\rm V}, \\ +2\hspace{0.05cm} {\rm V} & {\rm falls}\hspace{0.1cm} {\it x}({\it t})>+2\hspace{0.05cm} {\rm V}, \\\end{array}\right.$$ |
so entsteht das Signal $y(t)$ bzw. die neue Zufallsgröße $y$, die in den beiden letzten Teilfragen '''(5)''' und '''(6)''' betrachtet wird. <br /> | so entsteht das Signal $y(t)$ bzw. die neue Zufallsgröße $y$, die in den beiden letzten Teilfragen '''(5)''' und '''(6)''' betrachtet wird. <br /> | ||
− | * | + | *For the subtasks '''(1)''' and '''(2)''' apply $x_{\rm max} = 2\hspace{0.05cm} {\rm V} $. |
− | * | + | * For all other subtasks, set $x_{\rm max} = 4\hspace{0.05cm} {\rm V} $ . |
Line 23: | Line 23: | ||
− | + | Hints: | |
− | * | + | *The task belongs to the chapter [[Theory_of_Stochastic_Signals/Probability_Density_Function_(PDF)|Probability Density Function]]. |
− | * | + | *The topic of this chapter is illustrated with examples in the (German) learning video [[Wahrscheinlichkeit_und_WDF_(Lernvideo)|Wahrscheinlichkeit und WDF]] $\Rightarrow$ Probability and PDF. |
− | === | + | ===Questions=== |
<quiz display=simple> | <quiz display=simple> | ||
− | { | + | {Let $x_{\rm max} = +2\hspace{0.05cm} {\rm V}$. Calculate the parameter $A = f_x(0)$. |
|type="{}"} | |type="{}"} | ||
− | $A \ = \ $ { 0.5 3% } $\ \rm 1/V$ | + | $A \ = \ $ { 0.5 3% } $\ \rm 1/V$. |
− | { | + | {Further, let $x_{\rm max} = +2\hspace{0.05cm} {\rm V}$. With what probability is $|x(t)|$ less than $x_{\rm max}/2$? |
|type="{}"} | |type="{}"} | ||
− | ${\rm Pr}(|\hspace{0.05cm}x\hspace{0.05cm}| < 2\hspace{0.05cm} {\rm V}) \ = | + | ${\rm Pr}(|\hspace{0.05cm}x\hspace{0.05cm}| < 2\hspace{0.05cm} {\rm V}) \ = \ $ { 0.75 3% } |
− | { | + | {Now let $x_{\rm max} = +4\hspace{0.05cm} {\rm V}$. What is the probability that $x$ lies between $+1\hspace{0.05cm} {\rm V}$ and $+3\hspace{0.05cm} {\rm V}$ ? |
|type="{}"} | |type="{}"} | ||
− | ${\rm Pr}(1\hspace{0.05cm} {\rm V} < x <3\hspace{0.05cm} {\rm V}) \ = \ $ | + | ${\rm Pr}(1\hspace{0.05cm} {\rm V} < x <3\hspace{0.05cm} {\rm V}) \ = \ $ { 0.333 3% } |
− | { | + | { Let further $x_{\rm max} = +4\hspace{0.05cm} {\rm V}$. What is the probability that $x$ is exactly equal to $+2\hspace{0.05cm} {\rm V}$ ? |
|type="{}"} | |type="{}"} | ||
${\rm Pr}(x =2\hspace{0.05cm} {\rm V})\ = \ $ { 0. } | ${\rm Pr}(x =2\hspace{0.05cm} {\rm V})\ = \ $ { 0. } | ||
− | { | + | { Let further $x_{\rm max} = +4\hspace{0.05cm} {\rm V}$. Which of the following statements is true? |
|type="[]"} | |type="[]"} | ||
− | - $y$ | + | - $y$ is a continuous random variable. |
− | - $y$ | + | - $y$ is a discrete random variable. |
− | + $y$ | + | + $y$ is a mixed continuous-discrete random variable. |
− | { | + | {What is the probability with $x_{\rm max} = +4\hspace{0.05cm} {\rm V}$ that $y$ is exactly equal $+2\hspace{0.05cm} {\rm V}$ ? |
|type="{}"} | |type="{}"} | ||
${\rm Pr}(y =2\hspace{0.05cm} {\rm V})\ = \ $ { 0.167 3% } | ${\rm Pr}(y =2\hspace{0.05cm} {\rm V})\ = \ $ { 0.167 3% } | ||
+ | |||
Line 67: | Line 68: | ||
</quiz> | </quiz> | ||
− | === | + | ===Solution=== |
{{ML-Kopf}} | {{ML-Kopf}} | ||
− | [[File:StS_Z_3_1_bc_version2.png|right|frame| | + | [[File:StS_Z_3_1_bc_version2.png|right|frame|Height and area of triangular PDF]] |
− | '''(1)''' | + | '''(1)''' The area under the PDF must always yield the value $1$ . It follows that: |
:$${A}/{ 2}\cdot {4\hspace{0.05cm}\rm V}=1\hspace{0.5cm}\Rightarrow\hspace{0.5cm} A | :$${A}/{ 2}\cdot {4\hspace{0.05cm}\rm V}=1\hspace{0.5cm}\Rightarrow\hspace{0.5cm} A | ||
\hspace{0.15cm}\underline{=\rm 0.5\;{1}/{V}}.$$ | \hspace{0.15cm}\underline{=\rm 0.5\;{1}/{V}}.$$ | ||
Line 76: | Line 77: | ||
− | '''(2)''' | + | '''(2)''' With $x_{\rm max} = +2\hspace{0.05cm} {\rm V}$ the PDF is obtained according to the left graph. |
− | * | + | *The shading marks the probability we are looking for. |
− | * | + | *One obtains by simple geometric considerations: |
:$${\rm Pr}(|x|<\rm 1\hspace{0.05cm} V)\hspace{0.15cm}\underline{=\rm 0.75}.$$ | :$${\rm Pr}(|x|<\rm 1\hspace{0.05cm} V)\hspace{0.15cm}\underline{=\rm 0.75}.$$ | ||
− | '''(3)''' | + | '''(3)''' With $x_{\rm max} = +4\hspace{0.05cm} {\rm V}$ one obtains the PDF shown on the right. |
− | * | + | *The maximum value is now $A = 1/(3\hspace{0.05cm} {\rm V})$. |
− | * | + | *The shaded area again indicates the probability we are looking for, which can be determined, for example, using the rectangle of equal area: |
:$${\rm Pr}(1\hspace{0.05cm} {\rm V}< x<3\hspace{0.05cm} {\rm V})=\rm \frac{1}{6\hspace{0.05cm} {\rm V}}\cdot 2\hspace{0.05cm} {\rm V}=\hspace{0.15cm}\underline{0.333}.$$ | :$${\rm Pr}(1\hspace{0.05cm} {\rm V}< x<3\hspace{0.05cm} {\rm V})=\rm \frac{1}{6\hspace{0.05cm} {\rm V}}\cdot 2\hspace{0.05cm} {\rm V}=\hspace{0.15cm}\underline{0.333}.$$ | ||
− | '''(4)''' | + | '''(4)''' Since $x$ represents a continuous random variable, this probability is by definition zero ⇒ ${\rm Pr}(x =2\hspace{0.05cm} {\rm V}) \;\underline {= 0}$. |
− | [[File:P_ID113__Sto_Z_3_1_f.png|right|frame| | + | [[File:P_ID113__Sto_Z_3_1_f.png|right|frame|Mixed continuous/discrete PDF]] |
− | '''(5)''' <u> | + | '''(5)''' <u>Only the last statement</u> of the given answers is true: |
− | * | + | *The PDF $f_y(y)$ includes a continuous component (drawn in blue), |
− | * | + | *but also the (red) Dirac function at $y = +2\hspace{0.05cm} {\rm V}$ with weight ${\rm Pr}(x >2\hspace{0.05cm} {\rm V})$. |
− | '''(6)''' | + | '''(6)''' Opposite is the probability density of the random variable $y$ . |
− | * | + | *From the right figure for the subtask '''(3)''' one can see the relation: |
:$${\rm Pr}( y=2\hspace{0.05cm} {\rm V}) = {\rm Pr}( x> 2\hspace{0.05cm} {\rm V}) = \frac{1}{2}\cdot\frac{1}{6\hspace{0.05cm} {\rm V}}\cdot2{\hspace{0.05cm} {\rm V}} = {1}/{6}\hspace{0.15cm}\underline{=0.167}.$$ | :$${\rm Pr}( y=2\hspace{0.05cm} {\rm V}) = {\rm Pr}( x> 2\hspace{0.05cm} {\rm V}) = \frac{1}{2}\cdot\frac{1}{6\hspace{0.05cm} {\rm V}}\cdot2{\hspace{0.05cm} {\rm V}} = {1}/{6}\hspace{0.15cm}\underline{=0.167}.$$ | ||
{{ML-Fuß}} | {{ML-Fuß}} |
Revision as of 21:21, 24 December 2021
Wir betrachten eine kontinuierliche Zufallsgröße $x$ mit der oben skizzierten WDF.
- Der Minimalwert des Signals ist $x_{\rm min} = -2\hspace{0.05cm} {\rm V}$.
- Dagegen ist der maximale Wert $x_{\rm max}$ ein freier Parameter, der Werte zwischen $+2\hspace{0.05cm}\rm V$ und $+4\hspace{0.05cm} \rm V$ annehmen kann.
Die Zufallsgröße $x$ soll hier als der Momentanwert eines Zufallssignals aufgefasst werden. Gibt man dieses Signal $x(t)$ auf einen Amplitudenbegrenzer mit der Kennlinie (siehe untere Skizze)
$$y(t)=\left\{\begin{array}{*{4}{c}} -2\hspace{0.05cm} {\rm V} & {\rm falls}\hspace{0.1cm} x(t)<-2\hspace{0.05cm} {\rm V} , \\ x(t) & {\rm falls}\hspace{0.1cm}-2\hspace{0.05cm} {\rm V} \le x(t)\le +2\hspace{0.05cm} {\rm V}, \\ +2\hspace{0.05cm} {\rm V} & {\rm falls}\hspace{0.1cm} {\it x}({\it t})>+2\hspace{0.05cm} {\rm V}, \\\end{array}\right.$$
so entsteht das Signal $y(t)$ bzw. die neue Zufallsgröße $y$, die in den beiden letzten Teilfragen (5) und (6) betrachtet wird.
- For the subtasks (1) and (2) apply $x_{\rm max} = 2\hspace{0.05cm} {\rm V} $.
- For all other subtasks, set $x_{\rm max} = 4\hspace{0.05cm} {\rm V} $ .
Hints:
- The task belongs to the chapter Probability Density Function.
- The topic of this chapter is illustrated with examples in the (German) learning video Wahrscheinlichkeit und WDF $\Rightarrow$ Probability and PDF.
Questions
Solution
(1) The area under the PDF must always yield the value $1$ . It follows that:
- $${A}/{ 2}\cdot {4\hspace{0.05cm}\rm V}=1\hspace{0.5cm}\Rightarrow\hspace{0.5cm} A \hspace{0.15cm}\underline{=\rm 0.5\;{1}/{V}}.$$
(2) With $x_{\rm max} = +2\hspace{0.05cm} {\rm V}$ the PDF is obtained according to the left graph.
- The shading marks the probability we are looking for.
- One obtains by simple geometric considerations:
- $${\rm Pr}(|x|<\rm 1\hspace{0.05cm} V)\hspace{0.15cm}\underline{=\rm 0.75}.$$
(3) With $x_{\rm max} = +4\hspace{0.05cm} {\rm V}$ one obtains the PDF shown on the right.
- The maximum value is now $A = 1/(3\hspace{0.05cm} {\rm V})$.
- The shaded area again indicates the probability we are looking for, which can be determined, for example, using the rectangle of equal area:
- $${\rm Pr}(1\hspace{0.05cm} {\rm V}< x<3\hspace{0.05cm} {\rm V})=\rm \frac{1}{6\hspace{0.05cm} {\rm V}}\cdot 2\hspace{0.05cm} {\rm V}=\hspace{0.15cm}\underline{0.333}.$$
(4) Since $x$ represents a continuous random variable, this probability is by definition zero ⇒ ${\rm Pr}(x =2\hspace{0.05cm} {\rm V}) \;\underline {= 0}$.
(5) Only the last statement of the given answers is true:
- The PDF $f_y(y)$ includes a continuous component (drawn in blue),
- but also the (red) Dirac function at $y = +2\hspace{0.05cm} {\rm V}$ with weight ${\rm Pr}(x >2\hspace{0.05cm} {\rm V})$.
(6) Opposite is the probability density of the random variable $y$ .
- From the right figure for the subtask (3) one can see the relation:
- $${\rm Pr}( y=2\hspace{0.05cm} {\rm V}) = {\rm Pr}( x> 2\hspace{0.05cm} {\rm V}) = \frac{1}{2}\cdot\frac{1}{6\hspace{0.05cm} {\rm V}}\cdot2{\hspace{0.05cm} {\rm V}} = {1}/{6}\hspace{0.15cm}\underline{=0.167}.$$