Difference between revisions of "Aufgaben:Exercise 3.4: Characteristic Function"

From LNTwww
Line 3: Line 3:
 
}}
 
}}
  
[[File:P_ID619__Sto_A_3_4.png|right|frame|Rechteck–WDF und Trapez–WDF]]
+
[[File:P_ID619__Sto_A_3_4.png|right|frame|Rectangular PDF and trapezoidal PDF]]
Gegeben seien hier die drei Zufallsgrößen  $x$,  $y$  und  $z$ , meist durch ihre jeweiligen Wahrscheinlichkeitsdichtefunktionen:
+
Given here are the three random variables  $x$,  $y$  and  $z$ , mostly by their respective probability density functions:
  
*Über die Zufallsgröße  $x$  ist nichts weiter bekannt:   Diese kann sowohl eine diskrete als auch eine kontinuierliche Zufallsgröße sein und eine beliebige WDF  $f_x(x)$  besitzen.  Der Mittelwert ist allgemein gleich  $m_x$.
+
*Nothing else is known about the random variable  $x$  :   This can be both a discrete and a continuous random variable, and can have any PDF  $f_x(x)$  The mean is generally equal  $m_x$.
*Die kontinuierliche Zufallsgröße  $y$  kann nur Werte im Bereich zwischen  $1$  bis  $3$  mit  gleicher Wahrscheinlichkeit annehmen.  Der Mittelwert ist  $$m_y = 2.$$
+
*The continuous random variable  $y$  can only take values in the range between  $1$  to  $3$  with equal probability.  The mean is  $$m_y = 2.$$
*Die Zufallsgröße  $z$  besitzt die folgende charakteristische Funktion:
+
*The random variable  $z$  has the following characteristic function:
:$$C_z ({\it \Omega} ) = {\mathop{\rm si}\nolimits}( {3{\it \Omega}} ) \cdot {\mathop{\rm si}\nolimits} ( {2{\it \Omega} } ).$$
+
:$$C_z ({\it \Omega} ) = {\mathop{\rm si}\nolimits}( {3{\it \Omega}} ) \cdot {\mathop{\rm si}\nolimits} ( {2{\it \Omega} } ).$$
:Daneben wird noch der qualitative Verlauf der WDF  $f_z(z)$  entsprechend der blauen Skizze als bekannt vorausgesetzt.  Zu bestimmen sind die WDF-Parameter  $a$,  $b$  und  $c$  dieser WDF.
+
:Besides, the qualitative course of the WDF  $f_z(z)$  according to the blue sketch is assumed to be known.  To be determined are the PDF parameters  $a$,  $b$  and  $c$  of this PDF.
  
  
Line 17: Line 17:
  
  
 
+
Hints:  
 
+
*This exercise belongs to the chapter  [[Theory_of_Stochastic_Signals/Expected_Values_and_Moments|expected values and moments]].
''Hinweise:''
+
*Reference is made to the page   [[Theory_of_Stochastic_Signals/Expected_Values_and_Moments#Characteristic_function|charakteristic funcion]] .
*Die Aufgabe gehört zum  Kapitel  [[Theory_of_Stochastic_Signals/Erwartungswerte_und_Momente|Erwartungswerte und Momente]].
 
*Insbesondere wird auf die Seite   [[Theory_of_Stochastic_Signals/Erwartungswerte_und_Momente#Charakteristische_Funktion|Charakteristische Funktion]]  Bezug genommen.
 
 
   
 
   
*Die charakteristische Funktion einer zwischen  $\pm a$  gleichverteilten Zufallsgröße  $z$  lautet:
+
*The characteristic function of a between  $\pm a$  uniformly distributed random variable  $z$  is:
:$$C_z ( {\it \Omega} ) = {\mathop{\rm si}\nolimits} ( {a {\it \Omega} } )\quad {\rm{mit}}\quad {\mathop{\rm si}\nolimits}( x ) = \sin ( x )/x.$$
+
:$$C_z ( {\it \Omega} ) = {\mathop{\rm si}\nolimits} ( {a {\it \Omega} } )\quad {\rm{with}}\quad {\mathop{\rm si}\nolimits}( x ) = \sin ( x )/x.$$
  
  
===Fragebogen===
+
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Welche Aussagen sind bezüglich der charakteristischen Funktion&nbsp; $C_x ( {\it \Omega} )$&nbsp; stets &ndash; also bei beliebiger WDF &ndash; gültig?
+
{Which statements are valid with respect to the characteristic function&nbsp; $C_x ( {\it \Omega} )$&nbsp; always &ndash; that is, at any PDF &ndash;?
 
|type="[]"}
 
|type="[]"}
- $C_x ( {\it \Omega} )$&nbsp; ist die Fouriertransformierte von&nbsp; $f_x(x)$.
+
- $C_x ( {\it \Omega} )$&nbsp; is the Fourier transform of&nbsp; $f_x(x)$.
+ Der Realteil von&nbsp; $C_x ( {\it \Omega} )$&nbsp; ist eine gerade Funktion in&nbsp; ${\it \Omega}$.
+
+ The real part of&nbsp; $C_x ( {\it \Omega} )$&nbsp; is an even function in&nbsp; ${\it \Omega}$.
+ Der Imaginärteil von&nbsp; $C_x ( {\it \Omega} )$&nbsp; ist eine ungerade Funktion in&nbsp; ${\it \Omega}$.
+
+ The imaginary part of&nbsp; $C_x ( {\it \Omega} )$&nbsp; is an odd function in&nbsp; ${\it \Omega}$.
+ Der Wert an der Stelle&nbsp; ${\it \Omega} = 0$&nbsp; ist stets&nbsp; $C_x ( {\it \Omega} ) = 1$.
+
+ The value at location&nbsp; ${\it \Omega} = 0$&nbsp; is always&nbsp; $C_x ( {\it \Omega} ) = 1$.
- Bei mittelwertfreier Zufallsgröße&nbsp; $(m_x = 0)$&nbsp; ist&nbsp; $C_x ( {\it \Omega} )$&nbsp; stets reell.
+
- For zero mean random variable&nbsp; $(m_x = 0)$&nbsp; is&nbsp; $C_x ( {\it \Omega} )$&nbsp; always real.
  
  
{Berechnen Sie die charakteristische Funktion&nbsp; $C_y( {\it \Omega} )$.&nbsp; Wie groß sind Real- und Imaginärteil bei&nbsp; ${\it \Omega} = \pi/2$?
+
{Calculate the characteristic function&nbsp; $C_y( {\it \Omega} )$.&nbsp; What are the real and imaginary parts at&nbsp; ${\it \Omega} = \pi/2$?
 
|type="{}"}
 
|type="{}"}
${\rm Re}\big[C_y(\Omega\ =\ \pi/2)\big] \ = \ $   { -0.657--0.617 }
+
${\rm Re}\big[C_y(\Omega\ =\ \pi/2)\big] \ = \ $ { -0.657--0.617 }
${\rm Im}\big[C_y(\Omega\ =\ \pi/2)\big] \ = \ $ { 0. }
+
${\rm Im}\big[C_y(\Omega\ =\ \pi/2)\big] \ = \ $ { 0. }
  
  
{Bestimmen Sie die Kenngrößen&nbsp; $a$,&nbsp; $b$&nbsp; und&nbsp; $c$&nbsp; der WDF&nbsp; $f_z(z)$.
+
{Determine the characteristics&nbsp; $a$,&nbsp; $b$&nbsp; and&nbsp; $c$&nbsp; of the PDF&nbsp; $f_z(z)$.
 
|type="{}"}
 
|type="{}"}
$a \ = \ $ { 1 3% }
+
$a \ = \ $ { 1 3% }
$b \ = \ $ { 5 3% }
+
$b \ = \ $ { 5 3% }
$c \ = \ $ { 0.167 3% }
+
$c \ = \ $ { 0.167 3% }
 
 
  
  
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solutions===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Richtig sind <u>die Lösungsvorschläge 2, 3 und 4</u>:
+
'''(1)'''&nbsp; Correct are <u>the proposed solutions 2, 3 and 4</u>:
* $C_x ( {\it \Omega} )$&nbsp; ist nicht die Fouriertransformierte zu&nbsp; $f_x(x)$,&nbsp; sondern die Fourierrücktransformierte:
+
* $C_x( {\it \Omega} )$&nbsp; is not the Fourier transform to&nbsp; $f_x(x)$,&nbsp; but the Fourier retransform:
:$$C_x( {\it \Omega } ) = \int_{ - \infty }^{ + \infty } {f_x }( x )\cdot {\rm{e}}^{\hspace{0.03cm}{\rm{j}}\hspace{0.03cm}{\it \Omega x}} \hspace{0.1cm}{\rm{d}}x .$$
+
:$$C_x( {\it \Omega } ) = \int_{ - \infty }^{ + \infty } {f_x }( x )\cdot {\rm{e}}^{\hspace{0.03cm}{\rm{j}}\hspace{0.03cm}{\it \Omega x}} \hspace{0.1cm}{\rm{d}}x .$$
*Auch bei dieser ist der Realteil stets gerade und der Imaginärteil ungerade.&nbsp; Für&nbsp; ${\it \Omega} = 0$&nbsp; gilt:
+
*Also for this, the real part is always even and the imaginary part odd.&nbsp; For&nbsp; ${\it \Omega} = 0$&nbsp; holds:
:$$C_x( {\it \Omega} = 0 ) = \int_{ - \infty }^{ + \infty } {f_x }( x ) \hspace{0.1cm}{\rm{d}}x = 1.$$
+
:$$C_x( {\it \Omega} = 0 ) = \int_{ - \infty }^{ + \infty } {f_x }( x ) \hspace{0.1cm}{\rm{d}}x = 1.$$
*Die letzte Alternative trifft nicht immer zu: &nbsp; Eine zweipunktverteilte Zufallsgröße&nbsp; $x \in \{-1, +3\}$&nbsp; mit den Wahrscheinlichkeiten&nbsp; $0.75$&nbsp; und&nbsp; $0.25$&nbsp; ist zwar mittelwertfrei&nbsp; $(m_x = 0)$, besitzt aber trotzdem eine komplexe charakteristische Funktion.  
+
*The last alternative does not always hold: &nbsp; A two-point distributed random variable&nbsp; $x \in \{-1, +3\}$&nbsp; with probabilities&nbsp; $0.75$&nbsp; and&nbsp; $0.25$&nbsp; is zero mean&nbsp; $(m_x = 0)$, but still has a complex characteristic function.  
  
  
  
'''(2)'''&nbsp; Entsprechend der allgemeinen Definition gilt:
+
'''(2)'''&nbsp; According to the general definition:
 
:$$C_y( {\it \Omega  } ) = \int_{ - \infty }^{ + \infty } {f_y }( y )\cdot {\rm{e}}^{{\rm{j}}{\it \Omega y}} \hspace{0.1cm}{\rm{d}}y  = 0.5\int_1^3 {{\rm{e}}^{{\rm{j}}\Omega y} \hspace{0.1cm}{\rm{d}}y.} $$
 
:$$C_y( {\it \Omega  } ) = \int_{ - \infty }^{ + \infty } {f_y }( y )\cdot {\rm{e}}^{{\rm{j}}{\it \Omega y}} \hspace{0.1cm}{\rm{d}}y  = 0.5\int_1^3 {{\rm{e}}^{{\rm{j}}\Omega y} \hspace{0.1cm}{\rm{d}}y.} $$
  
*Nach Lösen dieses Integrals ergibt sich:
+
*After solving this integral, we get:
 
:$$C_y ( {\it \Omega } ) = \frac{{{\rm{e}}^{{\rm{j}}3{\it \Omega } }  - {\rm{e}}^{{\rm{j}}{\it \Omega } } }}{{2{\rm{j}}{\it \Omega } }} = \frac{{{\rm{e}}^{{\rm{j}}{\it \Omega } }  - {\rm{e}}^{{\rm{ - j}}{\it \Omega }} }}{{2{\rm{j}}{\it \Omega } }} \cdot {\rm{e}}^{{\rm{j2}}{\it \Omega } } .$$
 
:$$C_y ( {\it \Omega } ) = \frac{{{\rm{e}}^{{\rm{j}}3{\it \Omega } }  - {\rm{e}}^{{\rm{j}}{\it \Omega } } }}{{2{\rm{j}}{\it \Omega } }} = \frac{{{\rm{e}}^{{\rm{j}}{\it \Omega } }  - {\rm{e}}^{{\rm{ - j}}{\it \Omega }} }}{{2{\rm{j}}{\it \Omega } }} \cdot {\rm{e}}^{{\rm{j2}}{\it \Omega } } .$$
  
*Mit dem Satz von Euler kann hierfür auch geschrieben werden:
+
*Using Euler's theorem, this can also be written:
 
:$$C_y ( {\it \Omega }  ) = \frac{{\sin ( {\it \Omega }  )}}{{\it \Omega } } \cdot {\rm{e}}^{{\rm{j2}}{\it \Omega } } .$$
 
:$$C_y ( {\it \Omega }  ) = \frac{{\sin ( {\it \Omega }  )}}{{\it \Omega } } \cdot {\rm{e}}^{{\rm{j2}}{\it \Omega } } .$$
  
*Für&nbsp; ${\it \Omega} = \pi/2$&nbsp; erhält man somit einen rein reellen Zahlenwert:
+
*For&nbsp; ${\it \Omega} = \pi/2$&nbsp; we thus obtain a purely real numerical value:
 
:$${\rm Re}[C_y ({\it \Omega}  = {\rm{\pi }}/2 )] = \frac{{\sin( {{\rm{\pi }}/2})}}{{{\rm{\pi }}/2}} \cdot {\rm{e}}^{{\rm{j\pi }}}  =  - \frac{2}{{\rm{\pi }}}
 
:$${\rm Re}[C_y ({\it \Omega}  = {\rm{\pi }}/2 )] = \frac{{\sin( {{\rm{\pi }}/2})}}{{{\rm{\pi }}/2}} \cdot {\rm{e}}^{{\rm{j\pi }}}  =  - \frac{2}{{\rm{\pi }}}
 
\hspace{0.15cm}\underline{\approx -0.637}, \hspace{0.5cm}
 
\hspace{0.15cm}\underline{\approx -0.637}, \hspace{0.5cm}
Line 81: Line 78:
  
  
'''(3)'''&nbsp; Aus der angegebenen Korrespondenz kann abgelesen werden, dass&nbsp; ${\rm si}(3 {\it \Omega} )$&nbsp; auf eine zwischen&nbsp; $\pm 3$&nbsp; gleichverteilte Zufallsgröße zurückgeht und&nbsp; ${\rm si}(2 {\it \Omega} )$&nbsp; die Transformierte einer Gleichverteilung zwischen&nbsp; $\pm 2$&nbsp; angibt.  
+
'''(3)'''&nbsp; From the given correspondence it can be read that&nbsp; ${\rm si}(3 {\it \Omega} )$&nbsp; is due to an between&nbsp; $\pm 3$&nbsp; equally distributed random variable and&nbsp; ${\rm si}(2 {\it \Omega} )$&nbsp; gives the transform of a uniform distribution between&nbsp; $\pm 2$&nbsp; .  
  
*In der charakteristischen Funktion sind diese beiden Anteile multiplikativ verknüpft. Damit ist die resultierende WDF&nbsp; $f_z(z)$&nbsp; die Faltung dieser beiden Rechteckfunktionen:
+
*In the characteristic function, these two proportions are multiplicatively linked. Thus, the resulting PDF&nbsp; $f_z(z)$&nbsp; is the convolution of these two rectangular functions:
[[File:P_ID620__Sto_A_3_4_c_neu.png|center|frame|Konstruktion der Trapez-WDF]]
+
[[File:P_ID620__Sto_A_3_4_c_neu.png|center|frame|Construction of trapezoidal PDF]]
*Die drei WDF-Parameter lauten somit:
+
*The three PDF parameters are thus:
 
:$$\hspace{0.15cm}\underline{a = 1},\quad \hspace{0.15cm}\underline{b = 5},
 
:$$\hspace{0.15cm}\underline{a = 1},\quad \hspace{0.15cm}\underline{b = 5},
 
\quad c = 1/6 \hspace{0.15cm}\underline{= 0.167}.$$
 
\quad c = 1/6 \hspace{0.15cm}\underline{= 0.167}.$$

Revision as of 23:08, 28 December 2021

Rectangular PDF and trapezoidal PDF

Given here are the three random variables  $x$,  $y$  and  $z$ , mostly by their respective probability density functions:

  • Nothing else is known about the random variable  $x$  :   This can be both a discrete and a continuous random variable, and can have any PDF  $f_x(x)$  The mean is generally equal  $m_x$.
  • The continuous random variable  $y$  can only take values in the range between  $1$  to  $3$  with equal probability.  The mean is  $$m_y = 2.$$
  • The random variable  $z$  has the following characteristic function:
$$C_z ({\it \Omega} ) = {\mathop{\rm si}\nolimits}( {3{\it \Omega}} ) \cdot {\mathop{\rm si}\nolimits} ( {2{\it \Omega} } ).$$
Besides, the qualitative course of the WDF  $f_z(z)$  according to the blue sketch is assumed to be known.  To be determined are the PDF parameters  $a$,  $b$  and  $c$  of this PDF.




Hints:

  • The characteristic function of a between  $\pm a$  uniformly distributed random variable  $z$  is:
$$C_z ( {\it \Omega} ) = {\mathop{\rm si}\nolimits} ( {a {\it \Omega} } )\quad {\rm{with}}\quad {\mathop{\rm si}\nolimits}( x ) = \sin ( x )/x.$$


Questions

1

Which statements are valid with respect to the characteristic function  $C_x ( {\it \Omega} )$  always – that is, at any PDF –?

$C_x ( {\it \Omega} )$  is the Fourier transform of  $f_x(x)$.
The real part of  $C_x ( {\it \Omega} )$  is an even function in  ${\it \Omega}$.
The imaginary part of  $C_x ( {\it \Omega} )$  is an odd function in  ${\it \Omega}$.
The value at location  ${\it \Omega} = 0$  is always  $C_x ( {\it \Omega} ) = 1$.
For zero mean random variable  $(m_x = 0)$  is  $C_x ( {\it \Omega} )$  always real.

2

Calculate the characteristic function  $C_y( {\it \Omega} )$.  What are the real and imaginary parts at  ${\it \Omega} = \pi/2$?

${\rm Re}\big[C_y(\Omega\ =\ \pi/2)\big] \ = \ $

${\rm Im}\big[C_y(\Omega\ =\ \pi/2)\big] \ = \ $

3

Determine the characteristics  $a$,  $b$  and  $c$  of the PDF  $f_z(z)$.

$a \ = \ $

$b \ = \ $

$c \ = \ $


Solutions

(1)  Correct are the proposed solutions 2, 3 and 4:

  • $C_x( {\it \Omega} )$  is not the Fourier transform to  $f_x(x)$,  but the Fourier retransform:
$$C_x( {\it \Omega } ) = \int_{ - \infty }^{ + \infty } {f_x }( x )\cdot {\rm{e}}^{\hspace{0.03cm}{\rm{j}}\hspace{0.03cm}{\it \Omega x}} \hspace{0.1cm}{\rm{d}}x .$$
  • Also for this, the real part is always even and the imaginary part odd.  For  ${\it \Omega} = 0$  holds:
$$C_x( {\it \Omega} = 0 ) = \int_{ - \infty }^{ + \infty } {f_x }( x ) \hspace{0.1cm}{\rm{d}}x = 1.$$
  • The last alternative does not always hold:   A two-point distributed random variable  $x \in \{-1, +3\}$  with probabilities  $0.75$  and  $0.25$  is zero mean  $(m_x = 0)$, but still has a complex characteristic function.


(2)  According to the general definition:

$$C_y( {\it \Omega } ) = \int_{ - \infty }^{ + \infty } {f_y }( y )\cdot {\rm{e}}^{{\rm{j}}{\it \Omega y}} \hspace{0.1cm}{\rm{d}}y = 0.5\int_1^3 {{\rm{e}}^{{\rm{j}}\Omega y} \hspace{0.1cm}{\rm{d}}y.} $$
  • After solving this integral, we get:
$$C_y ( {\it \Omega } ) = \frac{{{\rm{e}}^{{\rm{j}}3{\it \Omega } } - {\rm{e}}^{{\rm{j}}{\it \Omega } } }}{{2{\rm{j}}{\it \Omega } }} = \frac{{{\rm{e}}^{{\rm{j}}{\it \Omega } } - {\rm{e}}^{{\rm{ - j}}{\it \Omega }} }}{{2{\rm{j}}{\it \Omega } }} \cdot {\rm{e}}^{{\rm{j2}}{\it \Omega } } .$$
  • Using Euler's theorem, this can also be written:
$$C_y ( {\it \Omega } ) = \frac{{\sin ( {\it \Omega } )}}{{\it \Omega } } \cdot {\rm{e}}^{{\rm{j2}}{\it \Omega } } .$$
  • For  ${\it \Omega} = \pi/2$  we thus obtain a purely real numerical value:
$${\rm Re}[C_y ({\it \Omega} = {\rm{\pi }}/2 )] = \frac{{\sin( {{\rm{\pi }}/2})}}{{{\rm{\pi }}/2}} \cdot {\rm{e}}^{{\rm{j\pi }}} = - \frac{2}{{\rm{\pi }}} \hspace{0.15cm}\underline{\approx -0.637}, \hspace{0.5cm} {\rm Im}[C_y ({\it \Omega} = {\rm{\pi }}/2 )] \hspace{0.15cm}\underline{= 0} .$$


(3)  From the given correspondence it can be read that  ${\rm si}(3 {\it \Omega} )$  is due to an between  $\pm 3$  equally distributed random variable and  ${\rm si}(2 {\it \Omega} )$  gives the transform of a uniform distribution between  $\pm 2$  .

  • In the characteristic function, these two proportions are multiplicatively linked. Thus, the resulting PDF  $f_z(z)$  is the convolution of these two rectangular functions:
Construction of trapezoidal PDF
  • The three PDF parameters are thus:
$$\hspace{0.15cm}\underline{a = 1},\quad \hspace{0.15cm}\underline{b = 5}, \quad c = 1/6 \hspace{0.15cm}\underline{= 0.167}.$$