Difference between revisions of "Aufgaben:Exercise 3.10: Rayleigh Fading"

From LNTwww
Line 63: Line 63:
  
  
{Calculate, starting from  $f_p(p)$  the WDF of the random variable  $a$.  What PDF value results for  $a=1$?
+
{Calculate, starting from  $f_p(p)$  the PDF of the random variable  $a$.  What PDF value results for  $a=1$?
 
|type="{}"}
 
|type="{}"}
 
$f_a(a = 1)\ = \ $ { 0.607 3% }
 
$f_a(a = 1)\ = \ $ { 0.607 3% }
Line 70: Line 70:
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Richtig sind <u>der erste und der dritte Lösungsvorschlag</u>:
+
'''(1)'''&nbsp; Correct are <u>the first and the third proposed solutions</u>:
*Die erste Aussage trifft aufgrund der Exponentialverteilung für&nbsp; $p(t)$&nbsp; zu.
+
*The first statement is true because of the exponential distribution for&nbsp; $p(t)$&nbsp;.
* Ein Phasenwinkel&nbsp; $\phi(t) = \pm \pi/2 \ (\pm 90^\circ)$&nbsp; bedeutet, dass der Realteil&nbsp; $x(t) = 0$&nbsp; ist.
+
* A phase angle&nbsp; $\phi(t) = \pm \pi/2 \ (\pm 90^\circ)$&nbsp; means that the real part&nbsp; $x(t) = 0$&nbsp;.
* Bei positivem Imagin&auml;rteil &nbsp;&#8658;&nbsp; $y(t) > 0$&nbsp; ist der Phasenwinkel&nbsp; $\phi(t) = +90^\circ$, bei negativem Imagin&auml;rteil betr&auml;gt der Phasenwinkel&nbsp; $\phi(t) = -90^\circ$.  
+
* For positive imaginary part&nbsp;&#8658;&nbsp; $y(t) > 0$&nbsp; the phase angle&nbsp; $\phi(t) = +90^\circ$, for negative imaginary part the phase angle&nbsp; $\phi(t) = -90^\circ$.  
  
  
  
'''(2)'''&nbsp; Mit&nbsp; $\sigma = 1$&nbsp; gilt f&uuml;r die WDF der Momentanleistung:  
+
'''(2)'''&nbsp; With&nbsp; $\sigma = 1$&nbsp; holds for the PDF of the instantaneous power:  
 
:$$f_p(p)= {\rm 1}/{\rm 2}\cdot{\rm e}^{-p/\rm 2}.$$
 
:$$f_p(p)= {\rm 1}/{\rm 2}\cdot{\rm e}^{-p/\rm 2}.$$
  
*Die gesuchte Wahrscheinlichkeit ist demnach:
+
*The probability we are looking for is thus:
 
:$${\rm Pr}(p(t) > 4) = \int_{\rm 4}^{\infty}{1}/{2}\cdot{\rm e}^{-p/\rm 2}\,{\rm d} p={\rm e}^{\rm -2} \rm \hspace{0.15cm}\underline{=13.5\%}.$$
 
:$${\rm Pr}(p(t) > 4) = \int_{\rm 4}^{\infty}{1}/{2}\cdot{\rm e}^{-p/\rm 2}\,{\rm d} p={\rm e}^{\rm -2} \rm \hspace{0.15cm}\underline{=13.5\%}.$$
  
  
  
'''(3)'''&nbsp; Da&nbsp; $p(t) =a^2(t)$&nbsp; gilt und zudem &nbsp;$a(t) < 0$&nbsp; nicht möglich ist, ist das Ereignis &nbsp;$a(t) > 2$&nbsp; identisch mit dem Ereignis &nbsp;$p(t) > 4$:  
+
'''(3)'''&nbsp; Since&nbsp; $p(t) =a^2(t)$&nbsp; holds and moreover &nbsp;$a(t) < 0$&nbsp; is not possible, the event &nbsp;$a(t) > 2$&nbsp; is identical to the event &nbsp;$p(t) > 4$:  
  
*Es ergibt sich die gleiche Wahrscheinlichkeit&nbsp; ${\rm Pr}(a(t) > 2)  \hspace{0.15cm}\underline{=13.5\%}$&nbsp; wie unter&nbsp; '''(2)'''&nbsp; berechnet.
+
*It results in the same probability&nbsp; ${\rm Pr}(a(t) > 2)  \hspace{0.15cm}\underline{=13.5\%}$&nbsp; as calculated in&nbsp; '''(2)'''&nbsp;.
  
  
'''(4)'''&nbsp; Allgemein gilt:
+
'''(4)'''&nbsp; In general:
 
:$$f_a(a)=\frac{f_p(p)}{|g'(p)|}\Bigg |_{\, p=h(a)}.$$
 
:$$f_a(a)=\frac{f_p(p)}{|g'(p)|}\Bigg |_{\, p=h(a)}.$$
  
*Die Transformationskennlinie lautet:
+
*The transformation characteristic is:
:$$g\hspace{0.05cm}'(p)=\frac{ {\rm d} a}{ {\rm d} p}=\frac{1}{2 \cdot \sqrt{p}}.$$
+
:$$g\hspace{0.05cm}'(p)=\frac{ {\rm d} a}{ {\rm d} p}=\frac{1}{2 \cdot \sqrt{p}}.$$
  
*Diese ist stets positiv.&nbsp; Daraus folgt für die Rayleigh&ndash;WDF:
+
*This is always positive.&nbsp; It follows for the Rayleigh PDF:
 
:$$f_a(a)=\sqrt {p}\cdot {\rm e}^{ -p/\rm 2}\Big|_{ p=a^{\rm 2}}= a\cdot {\rm e}^{\, -a^{\rm 2}/\rm 2}.$$
 
:$$f_a(a)=\sqrt {p}\cdot {\rm e}^{ -p/\rm 2}\Big|_{ p=a^{\rm 2}}= a\cdot {\rm e}^{\, -a^{\rm 2}/\rm 2}.$$
  
*F&uuml;r&nbsp; $a = 1$&nbsp; ergibt sich somit der Wert&nbsp; $f_a(a = 1)= {\rm e}^{-0.5}\hspace{0.15cm}\underline{=0.607} $.
+
*For&nbsp; $a = 1$&nbsp; this gives the value&nbsp; $f_a(a = 1)= {\rm e}^{-0.5}\hspace{0.15cm}\underline{=0.607} $.
 
 
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  

Revision as of 15:20, 12 January 2022

Rayleigh PDF

One often describes a bandpass transmission system in the so-called equivalent lowpass domain.  This representation leads according to the chapter "Bandpass-like signals" in the book  Signal Representation  to a complex signal:

$$z(t)=x(t)+ {\rm j} \cdot y(t).$$

The real part  $x(t)$  denotes the  inphase component  and the imaginary part  $y(t)$  the  quadrature component.

In a mobile radio system where there is no line of sight between the mobile user and the base station, the radio signal thus reaches the receiver exclusively by indirect means (refraction, scattering, reflection, etc.);

In this case, the following model is applicable:

  • The real part $x(t)$  and also the imaginary part $y(t)$  are both distributed and zero mean.
  • $x(t)$  and  $y(t)$  each have the same rms  $\sigma$  and are independent of each other.
  • Internal binding of the signals  $x(t)$  and  $y(t)$  due to the Doppler effect shall not be considered here.


The complex signal  $z(t)$  can also be represented by magnitude and phase:

$$ z(t)= a(t)\cdot {\rm e}^{\rm j \phi(t)}.$$
  • Because of symmetry with respect to  $x(t)$  and  $y(t)$  the phase  $\phi(t)$  is uniformly distributed.
  • In contrast, the magnitude  $a(t) = |z(t)|$  is Rayleigh distributed, which has led to the naming "Rayleigh fading".
  • As a further quantity we define the instantaneous power
$$ p(t)=x^{\rm 2}(t)+y^{\rm 2}( t)=a^{\rm 2}(t).$$

The random variable  $p$  is  (one-sided) exponentially distributed.  Its PDF is for  $p>0$:

$$f_p(p)=\frac{1}{2\sigma^{\rm 2}}\cdot {\rm e}^{ -p/(\sigma^{\rm 2})}.$$

For all negative $p$–values, of course  $f_p(p)= 0$ holds, since  $p$  denotes a power.



Hints:

  • This exercise belongs to the chapter  Further Distributions.
  • In particular, reference is made to the page  Rayleigh PDF.
  • The rms of the two Gaussian random variables  $x$  and  $y$  are each  $\sigma = 1$.
  • All variables are therefore to be understood as normalized.




Questions

1

Which of the following statements are always true?

Small instantaneous powers are more likely than large ones.
The phase  $\phi(t) = \pi/2$  also means "imaginary part $y(t) = 0$".
The phase  $\phi(t) = -\pi/2$  also means "real part $x(t) = 0$".

2

With what probability is the (normalized) instantaneous power  $p(t)$  greater than  $4$?

${\rm Pr}(p(t) > 4) \ = \ $

$\ \%$

3

What is the probability that the magnitude  $a(t)$  is greater than  $2$  ?

${\rm Pr}(a(t) > 2) \ = \ $

$\ \%$

4

Calculate, starting from  $f_p(p)$  the PDF of the random variable  $a$.  What PDF value results for  $a=1$?

$f_a(a = 1)\ = \ $


Solution

(1)  Correct are the first and the third proposed solutions:

  • The first statement is true because of the exponential distribution for  $p(t)$ .
  • A phase angle  $\phi(t) = \pm \pi/2 \ (\pm 90^\circ)$  means that the real part  $x(t) = 0$ .
  • For positive imaginary part ⇒  $y(t) > 0$  the phase angle  $\phi(t) = +90^\circ$, for negative imaginary part the phase angle  $\phi(t) = -90^\circ$.


(2)  With  $\sigma = 1$  holds for the PDF of the instantaneous power:

$$f_p(p)= {\rm 1}/{\rm 2}\cdot{\rm e}^{-p/\rm 2}.$$
  • The probability we are looking for is thus:
$${\rm Pr}(p(t) > 4) = \int_{\rm 4}^{\infty}{1}/{2}\cdot{\rm e}^{-p/\rm 2}\,{\rm d} p={\rm e}^{\rm -2} \rm \hspace{0.15cm}\underline{=13.5\%}.$$


(3)  Since  $p(t) =a^2(t)$  holds and moreover  $a(t) < 0$  is not possible, the event  $a(t) > 2$  is identical to the event  $p(t) > 4$:

  • It results in the same probability  ${\rm Pr}(a(t) > 2) \hspace{0.15cm}\underline{=13.5\%}$  as calculated in  (2) .


(4)  In general:

$$f_a(a)=\frac{f_p(p)}{|g'(p)|}\Bigg |_{\, p=h(a)}.$$
  • The transformation characteristic is:
$$g\hspace{0.05cm}'(p)=\frac{ {\rm d} a}{ {\rm d} p}=\frac{1}{2 \cdot \sqrt{p}}.$$
  • This is always positive.  It follows for the Rayleigh PDF:
$$f_a(a)=\sqrt {p}\cdot {\rm e}^{ -p/\rm 2}\Big|_{ p=a^{\rm 2}}= a\cdot {\rm e}^{\, -a^{\rm 2}/\rm 2}.$$
  • For  $a = 1$  this gives the value  $f_a(a = 1)= {\rm e}^{-0.5}\hspace{0.15cm}\underline{=0.607} $.