Difference between revisions of "Aufgaben:Exercise 4.3: Algebraic and Modulo Sum"

From LNTwww
Line 20: Line 20:
  
  
 
+
<br><br><br><br><br><br>
 
Hints: &nbsp;  
 
Hints: &nbsp;  
 
*This exercise belongs to the chapter&nbsp; [[Theory_of_Stochastic_Signals/Two-Dimensional_Random_Variables|Two-Dimensional Random Variables]].
 
*This exercise belongs to the chapter&nbsp; [[Theory_of_Stochastic_Signals/Two-Dimensional_Random_Variables|Two-Dimensional Random Variables]].
Line 66: Line 66:
 
===Solution===
 
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; It can be seen from the table on the information page that for the modulo 2 sum, the two values&nbsp; $0$&nbsp; and&nbsp; $1$&nbsp; have equal probability:  
+
'''(1)'''&nbsp; It can be seen from the table on the information page that for the modulo&ndash;2 sum,&nbsp; the two values&nbsp; $0$&nbsp; and&nbsp; $1$&nbsp; have equal probability:  
 
:$${\rm Pr}(m_\nu = 0) = {\rm Pr}(m_\nu = 1)\hspace{0.15cm}\underline{=0.5}.$$
 
:$${\rm Pr}(m_\nu = 0) = {\rm Pr}(m_\nu = 1)\hspace{0.15cm}\underline{=0.5}.$$
  
  
  
'''(2)'''&nbsp; The table shows that for each preassignment &nbsp; &rArr; &nbsp; $( x_{\nu-1}, x_{\nu-2}) = (0,0), (0,1), (1,0), (1,1)$ &nbsp; the values&nbsp; $m_\nu = 0$&nbsp; respectively&nbsp; $m_\nu = 1$&nbsp; are equally likely.  
+
'''(2)'''&nbsp; The table shows that for each preassignment &nbsp; &rArr; &nbsp; $( x_{\nu-1}, x_{\nu-2}) = (0,0), (0,1), (1,0), (1,1)$ &nbsp; the values&nbsp; $m_\nu = 0$&nbsp; and&nbsp; $m_\nu = 1$&nbsp; resp. are equally likely.  
 
*Expressed differently: &nbsp; ${\rm Pr}(m_{\nu}\hspace{0.05cm}|\hspace{0.05cm}m_{\nu-1}) = {\rm Pr}( m_{\nu}).$
 
*Expressed differently: &nbsp; ${\rm Pr}(m_{\nu}\hspace{0.05cm}|\hspace{0.05cm}m_{\nu-1}) = {\rm Pr}( m_{\nu}).$
 
*This exactly matches the definition of "statistical independence" &nbsp; &rArr; &nbsp; <u>Answer 1</u>.
 
*This exactly matches the definition of "statistical independence" &nbsp; &rArr; &nbsp; <u>Answer 1</u>.

Revision as of 15:28, 7 February 2022

Algebraic & modulo–2 sum
Table for moment calculation

A  "clocked"  random number generator returns a sequence  $\langle x_\nu \rangle$  of binary random numbers.

  • It is assumed that the binary numbers  $0$  and  $1$  occur with equal probabilities and that the individual random numbers do not depend on each other.
  • The random numbers  $ x_\nu \in \{0, 1\}$  are entered into the first memory location of a shift register and shifted down one digit with each clock pulse.


Two new random sequences  $\langle a_\nu \rangle$  and  $\langle m_\nu \rangle$  are formed from the contents of the three-digit shift register. Here denotes:

  • the  "algebraic sum"  $a_\nu$:
$$a_\nu=x_\nu+x_{\nu-1}+x_{\nu-2},$$
  • the  "modulo–2 sum"  $m_\nu$:
$$m_\nu=x_\nu\oplus x_{\nu-1}\oplus x_{\nu-2}.$$








Hints:  


Questions

1

Calculate the probabilities of the random variable  $m_\nu$.  What is the probability that the modulo-2 sum is equal to  $0$ ?

${\rm Pr}(m_\nu = 0) \ = \ $

2

Are there statistical dependencies within the sequence  $\langle m_\nu \rangle$?

The sequence elements  $m_\nu$  are statistically independent.
There are statistical bindings within the sequence  $\langle m_\nu \rangle$.

3

Determine the 2D–PDF  $f_{xm}(x_\nu, m_\nu)$.  Based on the result,  evaluate the following statements.

The random variables  $x_\nu$  and  $m_\nu$  are statistically dependent.
The random variables  $x_\nu$  and  $m_\nu$  are statistically independent.
The random variables  $x_\nu$  and  $m_\nu$  are correlated.
The random variables  $x_\nu$  and  $m_\nu$  are uncorrelated.

4

Do statistical dependencies exist within the sequence  $\langle a_\nu \rangle$ ?

The sequence elements  $a_\nu$  are statistically independent.
There are statistical bindings within the sequence  $\langle a_\nu \rangle$.

5

Determine the 2D–PDF  $f_{am}(a_\nu, m_\nu)$  and the correlation coefficient  $\rho_{am}$.  Which of the following statements are true?

The random variables  $a_\nu$  and  $m_\nu$  are statistically dependent.
The random variables  $a_\nu$  and  $m_\nu$  are statistically independent.
The random variables  $a_\nu$  and  $m_\nu$  are correlated.
The random variables  $a_\nu$  and  $m_\nu$  are uncorrelated.


Solution

(1)  It can be seen from the table on the information page that for the modulo–2 sum,  the two values  $0$  and  $1$  have equal probability:

$${\rm Pr}(m_\nu = 0) = {\rm Pr}(m_\nu = 1)\hspace{0.15cm}\underline{=0.5}.$$


(2)  The table shows that for each preassignment   ⇒   $( x_{\nu-1}, x_{\nu-2}) = (0,0), (0,1), (1,0), (1,1)$   the values  $m_\nu = 0$  and  $m_\nu = 1$  resp. are equally likely.

  • Expressed differently:   ${\rm Pr}(m_{\nu}\hspace{0.05cm}|\hspace{0.05cm}m_{\nu-1}) = {\rm Pr}( m_{\nu}).$
  • This exactly matches the definition of "statistical independence"   ⇒   Answer 1.


2D PDF of  $x$  and  $m$

(3)  Correct are the second and the last suggested solutions.

  • The 2D PDF consists of four Dirac functions, each with weight  $1/4$.
  • One obtains this result, for example, by evaluating the table on the data page.
  • Since $f_{xm}(x_\nu, m_\nu)$  is equal to the product $f_{x}(x_\nu) \cdot f_{m}(m_\nu)$  the quantities  $x_\nu$  and  $m_\nu$  are statistically independent.
  • Statistically independent random variables, however, are also linearly statistically independent, so they are certainly uncorrelated.



(4)  Within the sequence  $\langle a_\nu \rangle$  of algebraic sum there are statistical bindings   ⇒   Answer 2.

  • You can see this because the unconditional probability  $ {\rm Pr}( a_{\nu} = 0) =1/8$  is,
  • while, for example  ${\rm Pr}(a_{\nu} = 0\hspace{0.05cm}|\hspace{0.05cm}a_{\nu-1} = 3) =0$  holds.


2D PDF of  $a$  and  $m$

(5)  Correct are the first and the last suggested solutions:

  • As in the subtask  (3)  there are again four Dirac functions, but this time not with equal momentum weights  $1/4$.
  • The two-dimensional PDF thus cannot be written as a product of the two marginal probability densities.
  • But this means that statistical bindings must exist between  $a_\nu$  and  $m_\nu$  .
  • For the joint expected value, one obtains:
$${\rm E}\big[a\cdot m \big] = \rm \frac{1}{8}\cdot 0 \cdot 0 +\frac{3}{8}\cdot 2 \cdot 0 +\frac{3}{8}\cdot 1 \cdot 1 + \frac{1}{8}\cdot 3 \cdot 1 = \frac{3}{4}.$$
  • With the linear means  ${\rm E}\big[a \big] = 1.5$  and  ${\rm E}[m] = 0.5$  it thus follows for the covariance:
$$\mu_{am}= {\rm E}\big[ a\cdot m \big] - {\rm E}\big[ a \big]\cdot {\rm E} \big[ m \big] = \rm 0.75-1.5\cdot 0.5 = \rm 0.$$
  • Thus, the correlation coefficient  $\rho_{am}= 0$.  That is,   The dependencies present are nonlinear.
  • The quantities  $a_\nu$  and  $m_\nu$  are statistically dependent, but still uncorrelated.